Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac2lem Structured version   Visualization version   GIF version

Theorem kelac2lem 39671
Description: Lemma for kelac2 39672 and dfac21 39673: knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
kelac2lem (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)

Proof of Theorem kelac2lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 5335 . . . . 5 {𝑆, {𝒫 𝑆}} ∈ V
2 vex 3499 . . . . . . . 8 𝑥 ∈ V
32elpr 4592 . . . . . . 7 (𝑥 ∈ {𝑆, {𝒫 𝑆}} ↔ (𝑥 = 𝑆𝑥 = {𝒫 𝑆}))
4 vex 3499 . . . . . . . 8 𝑦 ∈ V
54elpr 4592 . . . . . . 7 (𝑦 ∈ {𝑆, {𝒫 𝑆}} ↔ (𝑦 = 𝑆𝑦 = {𝒫 𝑆}))
6 eqtr3 2845 . . . . . . . . 9 ((𝑥 = 𝑆𝑦 = 𝑆) → 𝑥 = 𝑦)
76orcd 869 . . . . . . . 8 ((𝑥 = 𝑆𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
8 ineq12 4186 . . . . . . . . . 10 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥𝑦) = ({𝒫 𝑆} ∩ 𝑆))
9 incom 4180 . . . . . . . . . . 11 ({𝒫 𝑆} ∩ 𝑆) = (𝑆 ∩ {𝒫 𝑆})
10 pwuninel 7943 . . . . . . . . . . . 12 ¬ 𝒫 𝑆𝑆
11 disjsn 4649 . . . . . . . . . . . 12 ((𝑆 ∩ {𝒫 𝑆}) = ∅ ↔ ¬ 𝒫 𝑆𝑆)
1210, 11mpbir 233 . . . . . . . . . . 11 (𝑆 ∩ {𝒫 𝑆}) = ∅
139, 12eqtri 2846 . . . . . . . . . 10 ({𝒫 𝑆} ∩ 𝑆) = ∅
148, 13syl6eq 2874 . . . . . . . . 9 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥𝑦) = ∅)
1514olcd 870 . . . . . . . 8 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = 𝑆) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
16 ineq12 4186 . . . . . . . . . 10 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥𝑦) = (𝑆 ∩ {𝒫 𝑆}))
1716, 12syl6eq 2874 . . . . . . . . 9 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥𝑦) = ∅)
1817olcd 870 . . . . . . . 8 ((𝑥 = 𝑆𝑦 = {𝒫 𝑆}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
19 eqtr3 2845 . . . . . . . . 9 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = {𝒫 𝑆}) → 𝑥 = 𝑦)
2019orcd 869 . . . . . . . 8 ((𝑥 = {𝒫 𝑆} ∧ 𝑦 = {𝒫 𝑆}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
217, 15, 18, 20ccase 1032 . . . . . . 7 (((𝑥 = 𝑆𝑥 = {𝒫 𝑆}) ∧ (𝑦 = 𝑆𝑦 = {𝒫 𝑆})) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
223, 5, 21syl2anb 599 . . . . . 6 ((𝑥 ∈ {𝑆, {𝒫 𝑆}} ∧ 𝑦 ∈ {𝑆, {𝒫 𝑆}}) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
2322rgen2 3205 . . . . 5 𝑥 ∈ {𝑆, {𝒫 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 𝑆}} (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)
24 baspartn 21564 . . . . 5 (({𝑆, {𝒫 𝑆}} ∈ V ∧ ∀𝑥 ∈ {𝑆, {𝒫 𝑆}}∀𝑦 ∈ {𝑆, {𝒫 𝑆}} (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → {𝑆, {𝒫 𝑆}} ∈ TopBases)
251, 23, 24mp2an 690 . . . 4 {𝑆, {𝒫 𝑆}} ∈ TopBases
26 tgcl 21579 . . . 4 ({𝑆, {𝒫 𝑆}} ∈ TopBases → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
2725, 26mp1i 13 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Top)
28 prfi 8795 . . . . . 6 {𝑆, {𝒫 𝑆}} ∈ Fin
29 pwfi 8821 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ Fin ↔ 𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin)
3028, 29mpbi 232 . . . . 5 𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin
31 tgdom 21588 . . . . . 6 ({𝑆, {𝒫 𝑆}} ∈ V → (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}})
321, 31ax-mp 5 . . . . 5 (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}}
33 domfi 8741 . . . . 5 ((𝒫 {𝑆, {𝒫 𝑆}} ∈ Fin ∧ (topGen‘{𝑆, {𝒫 𝑆}}) ≼ 𝒫 {𝑆, {𝒫 𝑆}}) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin)
3430, 32, 33mp2an 690 . . . 4 (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin
3534a1i 11 . . 3 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Fin)
3627, 35elind 4173 . 2 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ (Top ∩ Fin))
37 fincmp 22003 . 2 ((topGen‘{𝑆, {𝒫 𝑆}}) ∈ (Top ∩ Fin) → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
3836, 37syl 17 1 (𝑆𝑉 → (topGen‘{𝑆, {𝒫 𝑆}}) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  cin 3937  c0 4293  𝒫 cpw 4541  {csn 4569  {cpr 4571   cuni 4840   class class class wbr 5068  cfv 6357  cdom 8509  Fincfn 8511  topGenctg 16713  Topctop 21503  TopBasesctb 21555  Compccmp 21996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-topgen 16719  df-top 21504  df-bases 21556  df-cmp 21997
This theorem is referenced by:  kelac2  39672  dfac21  39673
  Copyright terms: Public domain W3C validator