Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  keridl Structured version   Visualization version   GIF version

Theorem keridl 33460
 Description: The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
keridl.1 𝐺 = (1st𝑆)
keridl.2 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
keridl ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))

Proof of Theorem keridl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2621 . . . 4 ran (1st𝑅) = ran (1st𝑅)
3 keridl.1 . . . 4 𝐺 = (1st𝑆)
4 eqid 2621 . . . 4 ran 𝐺 = ran 𝐺
51, 2, 3, 4rngohomf 33394 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran 𝐺)
6 cnvimass 5444 . . . 4 (𝐹 “ {𝑍}) ⊆ dom 𝐹
7 fdm 6008 . . . 4 (𝐹:ran (1st𝑅)⟶ran 𝐺 → dom 𝐹 = ran (1st𝑅))
86, 7syl5sseq 3632 . . 3 (𝐹:ran (1st𝑅)⟶ran 𝐺 → (𝐹 “ {𝑍}) ⊆ ran (1st𝑅))
95, 8syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 “ {𝑍}) ⊆ ran (1st𝑅))
10 eqid 2621 . . . . 5 (GId‘(1st𝑅)) = (GId‘(1st𝑅))
111, 2, 10rngo0cl 33347 . . . 4 (𝑅 ∈ RingOps → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
12113ad2ant1 1080 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (GId‘(1st𝑅)) ∈ ran (1st𝑅))
13 keridl.2 . . . . 5 𝑍 = (GId‘𝐺)
141, 10, 3, 13rngohom0 33400 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) = 𝑍)
15 fvex 6158 . . . . 5 (𝐹‘(GId‘(1st𝑅))) ∈ V
1615elsn 4163 . . . 4 ((𝐹‘(GId‘(1st𝑅))) ∈ {𝑍} ↔ (𝐹‘(GId‘(1st𝑅))) = 𝑍)
1714, 16sylibr 224 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})
18 ffn 6002 . . . 4 (𝐹:ran (1st𝑅)⟶ran 𝐺𝐹 Fn ran (1st𝑅))
19 elpreima 6293 . . . 4 (𝐹 Fn ran (1st𝑅) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
205, 18, 193syl 18 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ↔ ((GId‘(1st𝑅)) ∈ ran (1st𝑅) ∧ (𝐹‘(GId‘(1st𝑅))) ∈ {𝑍})))
2112, 17, 20mpbir2and 956 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}))
22 an4 864 . . . . . . . 8 (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})))
231, 2, 3rngohomadd 33397 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
2423adantr 481 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)𝐺(𝐹𝑦)))
25 oveq12 6613 . . . . . . . . . . . . . 14 (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
2625adantl 482 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → ((𝐹𝑥)𝐺(𝐹𝑦)) = (𝑍𝐺𝑍))
273rngogrpo 33338 . . . . . . . . . . . . . . . 16 (𝑆 ∈ RingOps → 𝐺 ∈ GrpOp)
284, 13grpoidcl 27214 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ GrpOp → 𝑍 ∈ ran 𝐺)
294, 13grpolid 27216 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ GrpOp ∧ 𝑍 ∈ ran 𝐺) → (𝑍𝐺𝑍) = 𝑍)
3028, 29mpdan 701 . . . . . . . . . . . . . . . 16 (𝐺 ∈ GrpOp → (𝑍𝐺𝑍) = 𝑍)
3127, 30syl 17 . . . . . . . . . . . . . . 15 (𝑆 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
32313ad2ant2 1081 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝑍𝐺𝑍) = 𝑍)
3332ad2antrr 761 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝑍𝐺𝑍) = 𝑍)
3424, 26, 333eqtrd 2659 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) ∧ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
3534ex 450 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍) → (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍))
36 fvex 6158 . . . . . . . . . . . . 13 (𝐹𝑥) ∈ V
3736elsn 4163 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ {𝑍} ↔ (𝐹𝑥) = 𝑍)
38 fvex 6158 . . . . . . . . . . . . 13 (𝐹𝑦) ∈ V
3938elsn 4163 . . . . . . . . . . . 12 ((𝐹𝑦) ∈ {𝑍} ↔ (𝐹𝑦) = 𝑍)
4037, 39anbi12i 732 . . . . . . . . . . 11 (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) ↔ ((𝐹𝑥) = 𝑍 ∧ (𝐹𝑦) = 𝑍))
41 fvex 6158 . . . . . . . . . . . 12 (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ V
4241elsn 4163 . . . . . . . . . . 11 ((𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍} ↔ (𝐹‘(𝑥(1st𝑅)𝑦)) = 𝑍)
4335, 40, 423imtr4g 285 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍}) → (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}))
4443imdistanda 728 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
451, 2rngogcl 33340 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
46453expib 1265 . . . . . . . . . . 11 (𝑅 ∈ RingOps → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
47463ad2ant1 1080 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)))
4847anim1d 587 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍}) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
4944, 48syld 47 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) ∧ ((𝐹𝑥) ∈ {𝑍} ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
5022, 49syl5bi 232 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})) → ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
51 elpreima 6293 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
525, 18, 513syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍})))
53 elpreima 6293 . . . . . . . . 9 (𝐹 Fn ran (1st𝑅) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
545, 18, 533syl 18 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝑦 ∈ (𝐹 “ {𝑍}) ↔ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍})))
5552, 54anbi12d 746 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) ↔ ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ∧ (𝑦 ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ {𝑍}))))
56 elpreima 6293 . . . . . . . 8 (𝐹 Fn ran (1st𝑅) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
575, 18, 563syl 18 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(1st𝑅)𝑦)) ∈ {𝑍})))
5850, 55, 573imtr4d 283 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ (𝐹 “ {𝑍}) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍})))
5958impl 649 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) ∧ 𝑦 ∈ (𝐹 “ {𝑍})) → (𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
6059ralrimiva 2960 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}))
6137anbi2i 729 . . . . . . 7 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) ↔ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍))
62 eqid 2621 . . . . . . . . . . . . . . . 16 (2nd𝑅) = (2nd𝑅)
631, 62, 2rngocl 33329 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
64633expb 1263 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
65643ad2antl1 1221 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6665anass1rs 848 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
6766adantlrr 756 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅))
68 eqid 2621 . . . . . . . . . . . . . . . 16 (2nd𝑆) = (2nd𝑆)
691, 2, 62, 68rngohommul 33398 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑧 ∈ ran (1st𝑅) ∧ 𝑥 ∈ ran (1st𝑅))) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
7069anass1rs 848 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
7170adantlrr 756 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)))
72 oveq2 6612 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7372adantl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
7473ad2antlr 762 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)(𝐹𝑥)) = ((𝐹𝑧)(2nd𝑆)𝑍))
751, 2, 3, 4rngohomcl 33395 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹𝑧) ∈ ran 𝐺)
7613, 4, 3, 68rngorz 33351 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
77763ad2antl2 1222 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7875, 77syldan 487 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
7978adantlr 750 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑧)(2nd𝑆)𝑍) = 𝑍)
8071, 74, 793eqtrd 2659 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
81 fvex 6158 . . . . . . . . . . . . 13 (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ V
8281elsn 4163 . . . . . . . . . . . 12 ((𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍} ↔ (𝐹‘(𝑧(2nd𝑅)𝑥)) = 𝑍)
8380, 82sylibr 224 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})
84 elpreima 6293 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
855, 18, 843syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8685ad2antrr 761 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ↔ ((𝑧(2nd𝑅)𝑥) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑧(2nd𝑅)𝑥)) ∈ {𝑍})))
8767, 83, 86mpbir2and 956 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}))
881, 62, 2rngocl 33329 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
89883expb 1263 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
90893ad2antl1 1221 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
9190anassrs 679 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
9291adantlrr 756 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅))
931, 2, 62, 68rngohommul 33398 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9493anassrs 679 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
9594adantlrr 756 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)))
96 oveq1 6611 . . . . . . . . . . . . . . 15 ((𝐹𝑥) = 𝑍 → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9796adantl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9897ad2antlr 762 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝐹𝑥)(2nd𝑆)(𝐹𝑧)) = (𝑍(2nd𝑆)(𝐹𝑧)))
9913, 4, 3, 68rngolz 33350 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ RingOps ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
100993ad2antl2 1222 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐹𝑧) ∈ ran 𝐺) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
10175, 100syldan 487 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
102101adantlr 750 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑍(2nd𝑆)(𝐹𝑧)) = 𝑍)
10395, 98, 1023eqtrd 2659 . . . . . . . . . . . 12 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
104 fvex 6158 . . . . . . . . . . . . 13 (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ V
105104elsn 4163 . . . . . . . . . . . 12 ((𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍} ↔ (𝐹‘(𝑥(2nd𝑅)𝑧)) = 𝑍)
106103, 105sylibr 224 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})
107 elpreima 6293 . . . . . . . . . . . . 13 (𝐹 Fn ran (1st𝑅) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
1085, 18, 1073syl 18 . . . . . . . . . . . 12 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
109108ad2antrr 761 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}) ↔ ((𝑥(2nd𝑅)𝑧) ∈ ran (1st𝑅) ∧ (𝐹‘(𝑥(2nd𝑅)𝑧)) ∈ {𝑍})))
11092, 106, 109mpbir2and 956 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))
11187, 110jca 554 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) ∧ 𝑧 ∈ ran (1st𝑅)) → ((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
112111ralrimiva 2960 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍)) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
113112ex 450 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) = 𝑍) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11461, 113syl5bi 232 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ (𝐹𝑥) ∈ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
11552, 114sylbid 230 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝑥 ∈ (𝐹 “ {𝑍}) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
116115imp 445 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍})))
11760, 116jca 554 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ (𝐹 “ {𝑍})) → (∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
118117ralrimiva 2960 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))
1191, 62, 2, 10isidl 33442 . . 3 (𝑅 ∈ RingOps → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1201193ad2ant1 1080 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝐹 “ {𝑍}) ∈ (Idl‘𝑅) ↔ ((𝐹 “ {𝑍}) ⊆ ran (1st𝑅) ∧ (GId‘(1st𝑅)) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑥 ∈ (𝐹 “ {𝑍})(∀𝑦 ∈ (𝐹 “ {𝑍})(𝑥(1st𝑅)𝑦) ∈ (𝐹 “ {𝑍}) ∧ ∀𝑧 ∈ ran (1st𝑅)((𝑧(2nd𝑅)𝑥) ∈ (𝐹 “ {𝑍}) ∧ (𝑥(2nd𝑅)𝑧) ∈ (𝐹 “ {𝑍}))))))
1219, 21, 118, 120mpbir3and 1243 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹 “ {𝑍}) ∈ (Idl‘𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907   ⊆ wss 3555  {csn 4148  ◡ccnv 5073  dom cdm 5074  ran crn 5075   “ cima 5077   Fn wfn 5842  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  GrpOpcgr 27189  GIdcgi 27190  RingOpscrngo 33322   RngHom crnghom 33388  Idlcidl 33435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-map 7804  df-grpo 27193  df-gid 27194  df-ginv 27195  df-ablo 27245  df-ghomOLD 33312  df-rngo 33323  df-rngohom 33391  df-idl 33438 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator