MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem8 Structured version   Visualization version   GIF version

Theorem kmlem8 9060
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 4-Apr-2004.)
Assertion
Ref Expression
kmlem8 ((¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (∃𝑧𝑢𝑤𝑧 𝜓 ∨ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
Distinct variable group:   𝑦,𝑢,𝑤,𝑧
Allowed substitution hints:   𝜓(𝑦,𝑧,𝑤,𝑢)

Proof of Theorem kmlem8
StepHypRef Expression
1 ralnex 3062 . . . . 5 (∀𝑧𝑢 ¬ ∀𝑤𝑧 𝜓 ↔ ¬ ∃𝑧𝑢𝑤𝑧 𝜓)
2 df-rex 2988 . . . . . . . 8 (∃𝑤𝑧 ¬ 𝜓 ↔ ∃𝑤(𝑤𝑧 ∧ ¬ 𝜓))
3 rexnal 3065 . . . . . . . 8 (∃𝑤𝑧 ¬ 𝜓 ↔ ¬ ∀𝑤𝑧 𝜓)
42, 3bitr3i 266 . . . . . . 7 (∃𝑤(𝑤𝑧 ∧ ¬ 𝜓) ↔ ¬ ∀𝑤𝑧 𝜓)
5 exsimpl 1876 . . . . . . . 8 (∃𝑤(𝑤𝑧 ∧ ¬ 𝜓) → ∃𝑤 𝑤𝑧)
6 n0 4007 . . . . . . . 8 (𝑧 ≠ ∅ ↔ ∃𝑤 𝑤𝑧)
75, 6sylibr 224 . . . . . . 7 (∃𝑤(𝑤𝑧 ∧ ¬ 𝜓) → 𝑧 ≠ ∅)
84, 7sylbir 225 . . . . . 6 (¬ ∀𝑤𝑧 𝜓𝑧 ≠ ∅)
98ralimi 3022 . . . . 5 (∀𝑧𝑢 ¬ ∀𝑤𝑧 𝜓 → ∀𝑧𝑢 𝑧 ≠ ∅)
101, 9sylbir 225 . . . 4 (¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∀𝑧𝑢 𝑧 ≠ ∅)
11 biimt 349 . . . . . . . . 9 (𝑧 ≠ ∅ → (∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
1211ralimi 3022 . . . . . . . 8 (∀𝑧𝑢 𝑧 ≠ ∅ → ∀𝑧𝑢 (∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
13 ralbi 3138 . . . . . . . 8 (∀𝑧𝑢 (∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) → (∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
1412, 13syl 17 . . . . . . 7 (∀𝑧𝑢 𝑧 ≠ ∅ → (∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦) ↔ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
1514anbi2d 742 . . . . . 6 (∀𝑧𝑢 𝑧 ≠ ∅ → ((¬ 𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ (¬ 𝑦𝑢 ∧ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)))))
1615exbidv 1931 . . . . 5 (∀𝑧𝑢 𝑧 ≠ ∅ → (∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)))))
17 kmlem2 9054 . . . . 5 (∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
1816, 17syl6rbbr 279 . . . 4 (∀𝑧𝑢 𝑧 ≠ ∅ → (∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
1910, 18syl 17 . . 3 (¬ ∃𝑧𝑢𝑤𝑧 𝜓 → (∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦)) ↔ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
2019pm5.74i 260 . 2 ((¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
21 pm4.64 386 . 2 ((¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (∃𝑧𝑢𝑤𝑧 𝜓 ∨ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
2220, 21bitri 264 1 ((¬ ∃𝑧𝑢𝑤𝑧 𝜓 → ∃𝑦𝑧𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧𝑦))) ↔ (∃𝑧𝑢𝑤𝑧 𝜓 ∨ ∃𝑦𝑦𝑢 ∧ ∀𝑧𝑢 ∃!𝑤 𝑤 ∈ (𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  wex 1785  wcel 2071  ∃!weu 2539  wne 2864  wral 2982  wrex 2983  cin 3647  c0 3991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-sep 4857  ax-nul 4865  ax-pr 4979  ax-un 7034
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-ral 2987  df-rex 2988  df-v 3274  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-nul 3992  df-sn 4254  df-pr 4256  df-uni 4513
This theorem is referenced by:  dfackm  9069
  Copyright terms: Public domain W3C validator