Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem10 Structured version   Visualization version   GIF version

Theorem knoppcnlem10 33843
Description: Lemma for knoppcn 33845. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem10.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem10.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem10.n (𝜑𝑁 ∈ ℕ)
knoppcnlem10.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem10.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem10 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Distinct variable groups:   𝐶,𝑛,𝑦,𝑧   𝑛,𝑀,𝑧   𝑛,𝑁,𝑦,𝑧   𝑇,𝑛,𝑦,𝑧   𝜑,𝑛,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑧,𝑛)   𝑀(𝑥,𝑦)   𝑁(𝑥)

Proof of Theorem knoppcnlem10
StepHypRef Expression
1 knoppcnlem10.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 simpr 487 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3 knoppcnlem10.2 . . . . 5 (𝜑𝑀 ∈ ℕ0)
43adantr 483 . . . 4 ((𝜑𝑧 ∈ ℝ) → 𝑀 ∈ ℕ0)
51, 2, 4knoppcnlem1 33834 . . 3 ((𝜑𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))))
65mpteq2dva 5163 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) = (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))))
7 retopon 23374 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
87a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
9 eqid 2823 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
109cnfldtopon 23393 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . 4 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 knoppcnlem10.1 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1312recnd 10671 . . . . 5 (𝜑𝐶 ∈ ℂ)
1413, 3expcld 13513 . . . 4 (𝜑 → (𝐶𝑀) ∈ ℂ)
158, 11, 14cnmptc 22272 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝐶𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
16 2re 11714 . . . . . . . . . . . 12 2 ∈ ℝ
1716a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℝ)
18 knoppcnlem10.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
19 nnre 11647 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
2117, 20remulcld 10673 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℝ)
2221, 3reexpcld 13530 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℝ)
2322recnd 10671 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝑀) ∈ ℂ)
248, 11, 23cnmptc 22272 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ ((2 · 𝑁)↑𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
259tgioo2 23413 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
2625oveq2i 7169 . . . . . . . . 9 ((topGen‘ran (,)) Cn (topGen‘ran (,))) = ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))
2710topontopi 21525 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
28 cnrest2r 21897 . . . . . . . . . 10 ((TopOpen‘ℂfld) ∈ Top → ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
2927, 28ax-mp 5 . . . . . . . . 9 ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
3026, 29eqsstri 4003 . . . . . . . 8 ((topGen‘ran (,)) Cn (topGen‘ran (,))) ⊆ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
318cnmptid 22271 . . . . . . . 8 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
3230, 31sseldi 3967 . . . . . . 7 (𝜑 → (𝑧 ∈ ℝ ↦ 𝑧) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
339mulcn 23477 . . . . . . . 8 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3433a1i 11 . . . . . . 7 (𝜑 → · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
358, 24, 32, 34cnmpt12f 22276 . . . . . 6 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
3622adantr 483 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → ((2 · 𝑁)↑𝑀) ∈ ℝ)
3736, 2remulcld 10673 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → (((2 · 𝑁)↑𝑀) · 𝑧) ∈ ℝ)
3837fmpttd 6881 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)):ℝ⟶ℝ)
3938frnd 6523 . . . . . . . 8 (𝜑 → ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ)
40 ax-resscn 10596 . . . . . . . . 9 ℝ ⊆ ℂ
4140a1i 11 . . . . . . . 8 (𝜑 → ℝ ⊆ ℂ)
4211, 39, 413jca 1124 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ ∧ ℝ ⊆ ℂ))
43 cnrest2 21896 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4442, 43syl 17 . . . . . 6 (𝜑 → ((𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)) ↔ (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4535, 44mpbid 234 . . . . 5 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4645, 26eleqtrrdi 2926 . . . 4 (𝜑 → (𝑧 ∈ ℝ ↦ (((2 · 𝑁)↑𝑀) · 𝑧)) ∈ ((topGen‘ran (,)) Cn (topGen‘ran (,))))
47 ssid 3991 . . . . . . . 8 ℂ ⊆ ℂ
4840, 47pm3.2i 473 . . . . . . 7 (ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ)
49 cncfss 23509 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
5048, 49ax-mp 5 . . . . . 6 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
51 knoppcnlem10.t . . . . . . . 8 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
5251dnicn 33833 . . . . . . 7 𝑇 ∈ (ℝ–cn→ℝ)
5352a1i 11 . . . . . 6 (𝜑𝑇 ∈ (ℝ–cn→ℝ))
5450, 53sseldi 3967 . . . . 5 (𝜑𝑇 ∈ (ℝ–cn→ℂ))
5510toponrestid 21531 . . . . . . 7 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
569, 25, 55cncfcn 23519 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
5748, 56ax-mp 5 . . . . 5 (ℝ–cn→ℂ) = ((topGen‘ran (,)) Cn (TopOpen‘ℂfld))
5854, 57eleqtrdi 2925 . . . 4 (𝜑𝑇 ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
598, 46, 58cnmpt11f 22274 . . 3 (𝜑 → (𝑧 ∈ ℝ ↦ (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
608, 15, 59, 34cnmpt12f 22276 . 2 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝑧)))) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
616, 60eqeltrd 2915 1 (𝜑 → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑀)) ∈ ((topGen‘ran (,)) Cn (TopOpen‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3938  cmpt 5148  ran crn 5558  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  0cn0 11900  (,)cioo 12741  cfl 13163  cexp 13432  abscabs 14595  t crest 16696  TopOpenctopn 16697  topGenctg 16713  fldccnfld 20547  Topctop 21503  TopOnctopon 21520   Cn ccn 21834   ×t ctx 22170  cnccncf 23486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cn 21837  df-cnp 21838  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488
This theorem is referenced by:  knoppcnlem11  33844
  Copyright terms: Public domain W3C validator