Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem9 Structured version   Visualization version   GIF version

Theorem knoppcnlem9 33844
Description: Lemma for knoppcn 33847. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem9.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem9.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem9.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppcnlem9.n (𝜑𝑁 ∈ ℕ)
knoppcnlem9.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem9.2 (𝜑 → (abs‘𝐶) < 1)
Assertion
Ref Expression
knoppcnlem9 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
Distinct variable groups:   𝐶,𝑚,𝑛,𝑦   𝑖,𝐹,𝑚,𝑤,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑚,𝑤,𝑧,𝑛,𝑦   𝑥,𝑖,𝑚,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑧,𝑤,𝑖)   𝑇(𝑥,𝑧,𝑤,𝑖,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑤,𝑖,𝑚)   𝑊(𝑥,𝑦,𝑧,𝑤,𝑖,𝑚,𝑛)

Proof of Theorem knoppcnlem9
Dummy variables 𝑓 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 knoppcnlem9.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppcnlem9.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppcnlem9.n . . . 4 (𝜑𝑁 ∈ ℕ)
4 knoppcnlem9.1 . . . 4 (𝜑𝐶 ∈ ℝ)
5 knoppcnlem9.2 . . . 4 (𝜑 → (abs‘𝐶) < 1)
61, 2, 3, 4, 5knoppcnlem6 33841 . . 3 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
7 seqex 13374 . . . 4 seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ V
87eldm 5772 . . 3 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ) ↔ ∃𝑓seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
96, 8sylib 220 . 2 (𝜑 → ∃𝑓seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
10 simpr 487 . . . . 5 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
11 ulmcl 24972 . . . . . . . 8 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓𝑓:ℝ⟶ℂ)
1211feqmptd 6736 . . . . . . 7 (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓𝑓 = (𝑤 ∈ ℝ ↦ (𝑓𝑤)))
1312adantl 484 . . . . . 6 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → 𝑓 = (𝑤 ∈ ℝ ↦ (𝑓𝑤)))
14 nn0uz 12283 . . . . . . . . 9 0 = (ℤ‘0)
15 0zd 11996 . . . . . . . . 9 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → 0 ∈ ℤ)
16 eqidd 2825 . . . . . . . . 9 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) = ((𝐹𝑤)‘𝑖))
173ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
184ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
19 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑤 ∈ ℝ)
20 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
211, 2, 17, 18, 19, 20knoppcnlem3 33838 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℝ)
2221adantllr 717 . . . . . . . . . 10 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℝ)
2322recnd 10672 . . . . . . . . 9 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℂ)
241, 2, 3, 4knoppcnlem8 33843 . . . . . . . . . . 11 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
2524ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))):ℕ0⟶(ℂ ↑m ℝ))
26 simpr 487 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
27 seqex 13374 . . . . . . . . . . 11 seq0( + , (𝐹𝑤)) ∈ V
2827a1i 11 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ∈ V)
293ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝑁 ∈ ℕ)
304ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℝ)
31 simpr 487 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
321, 2, 29, 30, 31knoppcnlem7 33842 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
3332adantllr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)))
3433fveq1d 6675 . . . . . . . . . . 11 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝑤) = ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝑤))
35 eqid 2824 . . . . . . . . . . . 12 (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘)) = (𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))
36 fveq2 6673 . . . . . . . . . . . . . 14 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
3736seqeq3d 13380 . . . . . . . . . . . . 13 (𝑣 = 𝑤 → seq0( + , (𝐹𝑣)) = seq0( + , (𝐹𝑤)))
3837fveq1d 6675 . . . . . . . . . . . 12 (𝑣 = 𝑤 → (seq0( + , (𝐹𝑣))‘𝑘) = (seq0( + , (𝐹𝑤))‘𝑘))
3926adantr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → 𝑤 ∈ ℝ)
40 fvexd 6688 . . . . . . . . . . . 12 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → (seq0( + , (𝐹𝑤))‘𝑘) ∈ V)
4135, 38, 39, 40fvmptd3 6794 . . . . . . . . . . 11 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → ((𝑣 ∈ ℝ ↦ (seq0( + , (𝐹𝑣))‘𝑘))‘𝑤) = (seq0( + , (𝐹𝑤))‘𝑘))
4234, 41eqtrd 2859 . . . . . . . . . 10 ((((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) ∧ 𝑘 ∈ ℕ0) → ((seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))‘𝑘)‘𝑤) = (seq0( + , (𝐹𝑤))‘𝑘))
43 simplr 767 . . . . . . . . . 10 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓)
4414, 15, 25, 26, 28, 42, 43ulmclm 24978 . . . . . . . . 9 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ⇝ (𝑓𝑤))
4514, 15, 16, 23, 44isumclim 15115 . . . . . . . 8 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = (𝑓𝑤))
4645eqcomd 2830 . . . . . . 7 (((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) ∧ 𝑤 ∈ ℝ) → (𝑓𝑤) = Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4746mpteq2dva 5164 . . . . . 6 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → (𝑤 ∈ ℝ ↦ (𝑓𝑤)) = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)))
48 knoppcnlem9.w . . . . . . . 8 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
4948a1i 11 . . . . . . 7 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)))
5049eqcomd 2830 . . . . . 6 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)) = 𝑊)
5113, 47, 503eqtrd 2863 . . . . 5 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → 𝑓 = 𝑊)
5210, 51breqtrd 5095 . . . 4 ((𝜑 ∧ seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓) → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
5352ex 415 . . 3 (𝜑 → (seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊))
5453exlimdv 1933 . 2 (𝜑 → (∃𝑓seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑓 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊))
559, 54mpd 15 1 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))(⇝𝑢‘ℝ)𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wex 1779  wcel 2113  Vcvv 3497   class class class wbr 5069  cmpt 5149  dom cdm 5558  wf 6354  cfv 6358  (class class class)co 7159  f cof 7410  m cmap 8409  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  0cn0 11900  cfl 13163  seqcseq 13372  cexp 13432  abscabs 14596  Σcsu 15045  𝑢culm 24967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ulm 24968
This theorem is referenced by:  knoppcn  33847  knoppndvlem4  33858
  Copyright terms: Public domain W3C validator