Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem11 Structured version   Visualization version   GIF version

Theorem knoppndvlem11 32128
Description: Lemma for knoppndv 32140. (Contributed by Asger C. Ipsen, 28-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem11.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem11.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem11.a (𝜑𝐴 ∈ ℝ)
knoppndvlem11.b (𝜑𝐵 ∈ ℝ)
knoppndvlem11.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem11.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem11.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem11 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑦   𝑥,𝐴,𝑖   𝐵,𝑖,𝑛,𝑦   𝑥,𝐵   𝐶,𝑛,𝑦   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑖)   𝑇(𝑥,𝑖)   𝐹(𝑥,𝑦,𝑖,𝑛)   𝐽(𝑥)   𝑁(𝑖)

Proof of Theorem knoppndvlem11
StepHypRef Expression
1 fzfid 12709 . . . . 5 (𝜑 → (0...(𝐽 − 1)) ∈ Fin)
2 knoppndvlem11.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
3 knoppndvlem11.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
4 knoppndvlem11.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑁 ∈ ℕ)
6 knoppndvlem11.c . . . . . . . . . 10 (𝜑𝐶 ∈ (-1(,)1))
76knoppndvlem3 32120 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
87simpld 475 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
98adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐶 ∈ ℝ)
10 knoppndvlem11.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
1110adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐵 ∈ ℝ)
12 elfznn0 12371 . . . . . . . 8 (𝑖 ∈ (0...(𝐽 − 1)) → 𝑖 ∈ ℕ0)
1312adantl 482 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑖 ∈ ℕ0)
142, 3, 5, 9, 11, 13knoppcnlem3 32100 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) ∈ ℝ)
1514recnd 10013 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) ∈ ℂ)
16 knoppndvlem11.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1716adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐴 ∈ ℝ)
182, 3, 5, 9, 17, 13knoppcnlem3 32100 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
1918recnd 10013 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
201, 15, 19fsumsub 14443 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))
2120eqcomd 2632 . . 3 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) = Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)))
2221fveq2d 6154 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) = (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))))
2315, 19subcld 10337 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) ∈ ℂ)
241, 23fsumcl 14392 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) ∈ ℂ)
2524abscld 14104 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
2623abscld 14104 . . . 4 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
271, 26fsumrecl 14393 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
2810, 16resubcld 10403 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℝ)
2928recnd 10013 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℂ)
3029abscld 14104 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
31 2re 11035 . . . . . . . . . 10 2 ∈ ℝ
3231a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
33 nnre 10972 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
344, 33syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
3532, 34remulcld 10015 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℝ)
368recnd 10013 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
3736abscld 14104 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ ℝ)
3835, 37remulcld 10015 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3938adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
4039, 13reexpcld 12962 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
411, 40fsumrecl 14393 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4230, 41remulcld 10015 . . 3 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
431, 23fsumabs 14455 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))))
4430adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐵𝐴)) ∈ ℝ)
4544, 40remulcld 10015 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
463, 11, 13knoppcnlem1 32098 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))))
473, 17, 13knoppcnlem1 32098 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))
4846, 47oveq12d 6623 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
499, 13reexpcld 12962 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐶𝑖) ∈ ℝ)
5049recnd 10013 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐶𝑖) ∈ ℂ)
5135adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (2 · 𝑁) ∈ ℝ)
5251, 13reexpcld 12962 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁)↑𝑖) ∈ ℝ)
5352, 11remulcld 10015 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · 𝐵) ∈ ℝ)
542, 53dnicld2 32078 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) ∈ ℝ)
5554recnd 10013 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) ∈ ℂ)
5652, 17remulcld 10015 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) ∈ ℝ)
572, 56dnicld2 32078 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℝ)
5857recnd 10013 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℂ)
5950, 55, 58subdid 10431 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) = (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6059eqcomd 2632 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) = ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6148, 60eqtrd 2660 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6261fveq2d 6154 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) = (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6355, 58subcld 10337 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) ∈ ℂ)
6450, 63absmuld 14122 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = ((abs‘(𝐶𝑖)) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6536adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐶 ∈ ℂ)
6665, 13absexpd 14120 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐶𝑖)) = ((abs‘𝐶)↑𝑖))
6766oveq1d 6620 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐶𝑖)) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6864, 67eqtrd 2660 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6962, 68eqtrd 2660 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
7063abscld 14104 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) ∈ ℝ)
7153, 56resubcld 10403 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℝ)
7271recnd 10013 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℂ)
7372abscld 14104 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) ∈ ℝ)
7437adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘𝐶) ∈ ℝ)
7574, 13reexpcld 12962 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘𝐶)↑𝑖) ∈ ℝ)
7665absge0d 14112 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 0 ≤ (abs‘𝐶))
7774, 13, 76expge0d 12963 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 0 ≤ ((abs‘𝐶)↑𝑖))
782, 56, 53dnibnd 32096 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) ≤ (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))))
7970, 73, 75, 77, 78lemul2ad 10909 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) ≤ (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))))
8052recnd 10013 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁)↑𝑖) ∈ ℂ)
8111recnd 10013 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐵 ∈ ℂ)
8217recnd 10013 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐴 ∈ ℂ)
8380, 81, 82subdid 10431 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · (𝐵𝐴)) = ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))
8483eqcomd 2632 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) = (((2 · 𝑁)↑𝑖) · (𝐵𝐴)))
8584fveq2d 6154 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) = (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))))
8629adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐵𝐴) ∈ ℂ)
8780, 86absmuld 14122 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))) = ((abs‘((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))))
8851recnd 10013 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (2 · 𝑁) ∈ ℂ)
8988, 13absexpd 14120 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((2 · 𝑁)↑𝑖)) = ((abs‘(2 · 𝑁))↑𝑖))
9032recnd 10013 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
9134recnd 10013 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
9290, 91absmuld 14122 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(2 · 𝑁)) = ((abs‘2) · (abs‘𝑁)))
93 0le2 11056 . . . . . . . . . . . . . . . . . . 19 0 ≤ 2
9431absidi 14046 . . . . . . . . . . . . . . . . . . 19 (0 ≤ 2 → (abs‘2) = 2)
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . 18 (abs‘2) = 2
9695a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘2) = 2)
97 0red 9986 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
98 1red 10000 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
99 0le1 10496 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 1)
101 nnge1 10991 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
1024, 101syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ≤ 𝑁)
10397, 98, 34, 100, 102letrd 10139 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑁)
10434, 103absidd 14090 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝑁) = 𝑁)
10596, 104oveq12d 6623 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘2) · (abs‘𝑁)) = (2 · 𝑁))
10692, 105eqtrd 2660 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(2 · 𝑁)) = (2 · 𝑁))
107106oveq1d 6620 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(2 · 𝑁))↑𝑖) = ((2 · 𝑁)↑𝑖))
108107adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(2 · 𝑁))↑𝑖) = ((2 · 𝑁)↑𝑖))
10989, 108eqtrd 2660 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((2 · 𝑁)↑𝑖)) = ((2 · 𝑁)↑𝑖))
110109oveq1d 6620 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
11187, 110eqtrd 2660 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
11285, 111eqtrd 2660 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
113112oveq2d 6621 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))) = (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))))
11475recnd 10013 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘𝐶)↑𝑖) ∈ ℂ)
11544recnd 10013 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐵𝐴)) ∈ ℂ)
116114, 80, 115mulassd 10008 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))))
117116eqcomd 2632 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))) = ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))))
118114, 80mulcld 10005 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) ∈ ℂ)
119118, 115mulcomd 10006 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = ((abs‘(𝐵𝐴)) · (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖))))
120114, 80mulcomd 10006 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) = (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)))
12174recnd 10013 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘𝐶) ∈ ℂ)
12288, 121, 13mulexpd 12960 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) = (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)))
123122eqcomd 2632 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)) = (((2 · 𝑁) · (abs‘𝐶))↑𝑖))
124120, 123eqtrd 2660 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) = (((2 · 𝑁) · (abs‘𝐶))↑𝑖))
125124oveq2d 6621 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐵𝐴)) · (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
126117, 119, 1253eqtrd 2664 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
127113, 126eqtrd 2660 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
12879, 127breqtrd 4644 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) ≤ ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
12969, 128eqbrtrd 4640 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
1301, 26, 45, 129fsumle 14453 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13130recnd 10013 . . . . . 6 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℂ)
132124, 118eqeltrrd 2705 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℂ)
1331, 131, 132fsummulc2 14439 . . . . 5 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
134133eqcomd 2632 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
135130, 134breqtrd 4644 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13625, 27, 42, 43, 135letrd 10139 . 2 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13722, 136eqbrtrd 4640 1 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992   class class class wbr 4618  cmpt 4678  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886   < clt 10019  cle 10020  cmin 10211  -cneg 10212   / cdiv 10629  cn 10965  2c2 11015  0cn0 11237  (,)cioo 12114  ...cfz 12265  cfl 12528  cexp 12797  abscabs 13903  Σcsu 14345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-ioo 12118  df-ico 12120  df-fz 12266  df-fzo 12404  df-fl 12530  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-sum 14346
This theorem is referenced by:  knoppndvlem14  32131
  Copyright terms: Public domain W3C validator