Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem17 Structured version   Visualization version   GIF version

Theorem knoppndvlem17 32158
Description: Lemma for knoppndv 32164. (Contributed by Asger C. Ipsen, 12-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem17.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem17.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem17.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem17.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem17.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem17.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem17.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem17.m (𝜑𝑀 ∈ ℤ)
knoppndvlem17.n (𝜑𝑁 ∈ ℕ)
knoppndvlem17.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem17 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐵,𝑖,𝑛,𝑤,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑥,𝐽   𝑛,𝑀,𝑦   𝑥,𝑀   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑤)   𝑀(𝑤,𝑖)   𝑁(𝑤)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem17
StepHypRef Expression
1 knoppndvlem17.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (-1(,)1))
21knoppndvlem3 32144 . . . . . . . . . . . . 13 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
32simpld 475 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
43recnd 10012 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
54abscld 14109 . . . . . . . . . 10 (𝜑 → (abs‘𝐶) ∈ ℝ)
6 knoppndvlem17.j . . . . . . . . . 10 (𝜑𝐽 ∈ ℕ0)
75, 6reexpcld 12965 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
8 2re 11034 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
10 2ne0 11057 . . . . . . . . . 10 2 ≠ 0
1110a1i 11 . . . . . . . . 9 (𝜑 → 2 ≠ 0)
127, 9, 11redivcld 10797 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
1312recnd 10012 . . . . . . 7 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℂ)
14 1red 9999 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
15 knoppndvlem17.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ)
1615nnred 10979 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℝ)
179, 16remulcld 10014 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) ∈ ℝ)
1817, 5remulcld 10014 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
1918, 14resubcld 10402 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
20 0red 9985 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
21 0lt1 10494 . . . . . . . . . . . . . 14 0 < 1
2221a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
23 knoppndvlem17.1 . . . . . . . . . . . . . . 15 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
241, 15, 23knoppndvlem12 32153 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
2524simprd 479 . . . . . . . . . . . . 13 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2620, 14, 19, 22, 25lttrd 10142 . . . . . . . . . . . 12 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
2719, 26jca 554 . . . . . . . . . . 11 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
28 gt0ne0 10437 . . . . . . . . . . 11 (((((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
2927, 28syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
3014, 19, 29redivcld 10797 . . . . . . . . 9 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
3114, 30resubcld 10402 . . . . . . . 8 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
3231recnd 10012 . . . . . . 7 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℂ)
3313, 32mulcomd 10005 . . . . . 6 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)))
3433oveq1d 6619 . . . . 5 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)))
35 2rp 11781 . . . . . . . . . . 11 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℝ+)
3715nnrpd 11814 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ+)
3836, 37rpmulcld 11832 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℝ+)
396nn0zd 11424 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
4039znegcld 11428 . . . . . . . . 9 (𝜑 → -𝐽 ∈ ℤ)
4138, 40rpexpcld 12972 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ+)
4241rphalfcld 11828 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ+)
4342rpcnd 11818 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
4442rpne0d 11821 . . . . . 6 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ≠ 0)
4532, 13, 43, 44divassd 10780 . . . . 5 (𝜑 → (((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · (((abs‘𝐶)↑𝐽) / 2)) / (((2 · 𝑁)↑-𝐽) / 2)) = ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))))
4613, 43, 44divcld 10745 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) ∈ ℂ)
4732, 46mulcomd 10005 . . . . . 6 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
487recnd 10012 . . . . . . . . 9 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℂ)
4941rpcnd 11818 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
509recnd 10012 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
5141rpne0d 11821 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ≠ 0)
5248, 49, 50, 51, 11divcan7d 10773 . . . . . . . 8 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)))
5317recnd 10012 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
5438rpne0d 11821 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ≠ 0)
5553, 54, 39expnegd 12955 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
5655oveq2d 6620 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))))
57 1cnd 10000 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
5853, 6expcld 12948 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
5920, 22gtned 10116 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
6053, 54, 39expne0d 12954 . . . . . . . . . 10 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
6148, 57, 58, 59, 60divdiv2d 10777 . . . . . . . . 9 (𝜑 → (((abs‘𝐶)↑𝐽) / (1 / ((2 · 𝑁)↑𝐽))) = ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1))
6248, 58mulcld 10004 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) ∈ ℂ)
6362div1d 10737 . . . . . . . . . 10 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)))
6448, 58mulcomd 10005 . . . . . . . . . 10 (𝜑 → (((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
6553, 54jca 554 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
665recnd 10012 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ∈ ℂ)
671, 15, 23knoppndvlem13 32154 . . . . . . . . . . . . . . 15 (𝜑𝐶 ≠ 0)
684, 67absne0d 14120 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐶) ≠ 0)
6966, 68jca 554 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0))
7065, 69, 393jca 1240 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ))
71 mulexpz 12840 . . . . . . . . . . . 12 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ) → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7270, 71syl 17 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
7372eqcomd 2627 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7463, 64, 733eqtrd 2659 . . . . . . . . 9 (𝜑 → ((((abs‘𝐶)↑𝐽) · ((2 · 𝑁)↑𝐽)) / 1) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7556, 61, 743eqtrd 2659 . . . . . . . 8 (𝜑 → (((abs‘𝐶)↑𝐽) / ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7652, 75eqtrd 2655 . . . . . . 7 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
7776oveq1d 6619 . . . . . 6 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2)) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7847, 77eqtrd 2655 . . . . 5 (𝜑 → ((1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) · ((((abs‘𝐶)↑𝐽) / 2) / (((2 · 𝑁)↑-𝐽) / 2))) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
7934, 45, 783eqtrd 2659 . . . 4 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
8079eqcomd 2627 . . 3 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)))
8112, 31remulcld 10014 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ∈ ℝ)
82 knoppndvlem17.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
83 knoppndvlem17.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
84 knoppndvlem17.w . . . . . . 7 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
85 knoppndvlem17.b . . . . . . . . 9 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
8685a1i 11 . . . . . . . 8 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
87 knoppndvlem17.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
8887peano2zd 11429 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℤ)
8915, 39, 88knoppndvlem1 32142 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
9086, 89eqeltrd 2698 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
912simprd 479 . . . . . . 7 (𝜑 → (abs‘𝐶) < 1)
9282, 83, 84, 90, 15, 3, 91knoppcld 32134 . . . . . 6 (𝜑 → (𝑊𝐵) ∈ ℂ)
93 knoppndvlem17.a . . . . . . . . 9 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
9493a1i 11 . . . . . . . 8 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
9515, 39, 87knoppndvlem1 32142 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
9694, 95eqeltrd 2698 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
9782, 83, 84, 96, 15, 3, 91knoppcld 32134 . . . . . 6 (𝜑 → (𝑊𝐴) ∈ ℂ)
9892, 97subcld 10336 . . . . 5 (𝜑 → ((𝑊𝐵) − (𝑊𝐴)) ∈ ℂ)
9998abscld 14109 . . . 4 (𝜑 → (abs‘((𝑊𝐵) − (𝑊𝐴))) ∈ ℝ)
10082, 83, 84, 93, 85, 1, 6, 87, 15, 23knoppndvlem15 32156 . . . 4 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ (abs‘((𝑊𝐵) − (𝑊𝐴))))
10181, 99, 42, 100lediv1dd 11874 . . 3 (𝜑 → (((((abs‘𝐶)↑𝐽) / 2) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) / (((2 · 𝑁)↑-𝐽) / 2)) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10280, 101eqbrtrd 4635 . 2 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)))
10393, 85, 6, 87, 15knoppndvlem16 32157 . . . 4 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
104103eqcomd 2627 . . 3 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) = (𝐵𝐴))
105104oveq2d 6620 . 2 (𝜑 → ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (((2 · 𝑁)↑-𝐽) / 2)) = ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
106102, 105breqtrd 4639 1 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) ≤ ((abs‘((𝑊𝐵) − (𝑊𝐴))) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  cmpt 4673  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  +crp 11776  (,)cioo 12117  cfl 12531  cexp 12800  abscabs 13908  Σcsu 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-dvds 14908  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cn 20941  df-cnp 20942  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-ulm 24035
This theorem is referenced by:  knoppndvlem21  32162
  Copyright terms: Public domain W3C validator