Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem22 Structured version   Visualization version   GIF version

Theorem knoppndvlem22 33769
Description: Lemma for knoppndv 33770. (Contributed by Asger C. Ipsen, 19-Aug-2021.)
Hypotheses
Ref Expression
knoppndvlem22.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem22.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem22.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem22.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem22.d (𝜑𝐷 ∈ ℝ+)
knoppndvlem22.e (𝜑𝐸 ∈ ℝ+)
knoppndvlem22.h (𝜑𝐻 ∈ ℝ)
knoppndvlem22.n (𝜑𝑁 ∈ ℕ)
knoppndvlem22.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem22 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Distinct variable groups:   𝐶,𝑖,𝑛,𝑤,𝑦   𝐷,𝑎,𝑏   𝐷,𝑖,𝑛,𝑤,𝑦   𝐸,𝑎,𝑏   𝑖,𝐸,𝑛,𝑤,𝑦   𝑖,𝐹,𝑤   𝐻,𝑎,𝑏   𝑁,𝑎,𝑏   𝑖,𝑁,𝑛,𝑤,𝑦   𝑥,𝑁,𝑖,𝑤   𝑇,𝑛,𝑦   𝑊,𝑎,𝑏   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)   𝐶(𝑥,𝑎,𝑏)   𝐷(𝑥)   𝑇(𝑥,𝑤,𝑖,𝑎,𝑏)   𝐸(𝑥)   𝐹(𝑥,𝑦,𝑛,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem22
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 knoppndvlem22.c . . 3 (𝜑𝐶 ∈ (-1(,)1))
2 knoppndvlem22.n . . 3 (𝜑𝑁 ∈ ℕ)
3 knoppndvlem22.d . . 3 (𝜑𝐷 ∈ ℝ+)
4 knoppndvlem22.e . . 3 (𝜑𝐸 ∈ ℝ+)
5 knoppndvlem22.1 . . . 4 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
61, 2, 5knoppndvlem20 33767 . . 3 (𝜑 → (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ+)
71, 2, 3, 4, 6, 5knoppndvlem18 33765 . 2 (𝜑 → ∃𝑗 ∈ ℕ0 ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))
8 knoppndvlem22.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
9 knoppndvlem22.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
10 knoppndvlem22.w . . 3 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
11 eqid 2818 . . 3 (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
121adantr 481 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐶 ∈ (-1(,)1))
133adantr 481 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐷 ∈ ℝ+)
144adantr 481 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ∈ ℝ+)
15 knoppndvlem22.h . . . 4 (𝜑𝐻 ∈ ℝ)
1615adantr 481 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐻 ∈ ℝ)
17 simprl 767 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑗 ∈ ℕ0)
182adantr 481 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝑁 ∈ ℕ)
195adantr 481 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 1 < (𝑁 · (abs‘𝐶)))
20 simprrl 777 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → (((2 · 𝑁)↑-𝑗) / 2) < 𝐷)
21 simprrr 778 . . 3 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → 𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
228, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21knoppndvlem21 33768 . 2 ((𝜑 ∧ (𝑗 ∈ ℕ0 ∧ ((((2 · 𝑁)↑-𝑗) / 2) < 𝐷𝐸 ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝑗) · (1 − (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))))) → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
237, 22rexlimddv 3288 1 (𝜑 → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ ((𝑎𝐻𝐻𝑏) ∧ ((𝑏𝑎) < 𝐷𝑎𝑏) ∧ 𝐸 ≤ ((abs‘((𝑊𝑏) − (𝑊𝑎))) / (𝑏𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  cmin 10858  -cneg 10859   / cdiv 11285  cn 11626  2c2 11680  0cn0 11885  +crp 12377  (,)cioo 12726  cfl 13148  cexp 13417  abscabs 14581  Σcsu 15030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-dvds 15596  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cn 21763  df-cnp 21764  df-tx 22098  df-hmeo 22291  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-ulm 24892
This theorem is referenced by:  knoppndv  33770
  Copyright terms: Public domain W3C validator