Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem6 Structured version   Visualization version   GIF version

Theorem knoppndvlem6 32147
Description: Lemma for knoppndv 32164. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem6.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem6.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem6.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem6.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem6.m (𝜑𝑀 ∈ ℤ)
knoppndvlem6.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem6 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑤)   𝑀(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem6
StepHypRef Expression
1 knoppndvlem6.w . . . . 5 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
21a1i 11 . . . 4 (𝜑𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)))
3 fveq2 6148 . . . . . . 7 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
43fveq1d 6150 . . . . . 6 (𝑤 = 𝐴 → ((𝐹𝑤)‘𝑖) = ((𝐹𝐴)‘𝑖))
54sumeq2sdv 14368 . . . . 5 (𝑤 = 𝐴 → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
65adantl 482 . . . 4 ((𝜑𝑤 = 𝐴) → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
7 knoppndvlem6.a . . . . . 6 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
87a1i 11 . . . . 5 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
9 knoppndvlem6.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
10 knoppndvlem6.j . . . . . . 7 (𝜑𝐽 ∈ ℕ0)
1110nn0zd 11424 . . . . . 6 (𝜑𝐽 ∈ ℤ)
12 knoppndvlem6.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
139, 11, 12knoppndvlem1 32142 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
148, 13eqeltrd 2698 . . . 4 (𝜑𝐴 ∈ ℝ)
15 sumex 14352 . . . . 5 Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V
1615a1i 11 . . . 4 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V)
172, 6, 14, 16fvmptd 6245 . . 3 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
18 nn0uz 11666 . . . 4 0 = (ℤ‘0)
19 eqid 2621 . . . 4 (ℤ‘(𝐽 + 1)) = (ℤ‘(𝐽 + 1))
20 peano2nn0 11277 . . . . 5 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ0)
2110, 20syl 17 . . . 4 (𝜑 → (𝐽 + 1) ∈ ℕ0)
22 eqidd 2622 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) = ((𝐹𝐴)‘𝑖))
23 knoppndvlem6.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
24 knoppndvlem6.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
259adantr 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
26 knoppndvlem6.c . . . . . . . . 9 (𝜑𝐶 ∈ (-1(,)1))
2726knoppndvlem3 32144 . . . . . . . 8 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2827simpld 475 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
2928adantr 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
3014adantr 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐴 ∈ ℝ)
31 simpr 477 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3223, 24, 25, 29, 30, 31knoppcnlem3 32124 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
3332recnd 10012 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
3423, 24, 1, 14, 26, 9knoppndvlem4 32145 . . . . 5 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
35 seqex 12743 . . . . . 6 seq0( + , (𝐹𝐴)) ∈ V
36 fvex 6158 . . . . . 6 (𝑊𝐴) ∈ V
3735, 36breldm 5289 . . . . 5 (seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴) → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3834, 37syl 17 . . . 4 (𝜑 → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3918, 19, 21, 22, 33, 38isumsplit 14497 . . 3 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) = (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4010nn0cnd 11297 . . . . . . 7 (𝜑𝐽 ∈ ℂ)
41 1cnd 10000 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4240, 41pncand 10337 . . . . . 6 (𝜑 → ((𝐽 + 1) − 1) = 𝐽)
4342oveq2d 6620 . . . . 5 (𝜑 → (0...((𝐽 + 1) − 1)) = (0...𝐽))
4443sumeq1d 14365 . . . 4 (𝜑 → Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
4544oveq1d 6619 . . 3 (𝜑 → (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4617, 39, 453eqtrd 2659 . 2 (𝜑 → (𝑊𝐴) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4714adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 ∈ ℝ)
48 eluznn0 11701 . . . . . . . . 9 (((𝐽 + 1) ∈ ℕ0𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
4921, 48sylan 488 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
5024, 47, 49knoppcnlem1 32122 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))
517a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
5251oveq2d 6620 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) = (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
539adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑁 ∈ ℕ)
5449nn0zd 11424 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℤ)
5511adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 ∈ ℤ)
5612adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑀 ∈ ℤ)
57 eluzle 11644 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ‘(𝐽 + 1)) → (𝐽 + 1) ≤ 𝑖)
5857adantl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 + 1) ≤ 𝑖)
5955, 54jca 554 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ))
60 zltp1le 11371 . . . . . . . . . . . . 13 ((𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
6159, 60syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
6258, 61mpbird 247 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 < 𝑖)
6353, 54, 55, 56, 62knoppndvlem2 32143 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
6452, 63eqeltrd 2698 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) ∈ ℤ)
6523, 64dnizeq0 32104 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) = 0)
6665oveq2d 6620 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) = ((𝐶𝑖) · 0))
6728recnd 10012 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
6867adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐶 ∈ ℂ)
6968, 49expcld 12948 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐶𝑖) ∈ ℂ)
7069mul01d 10179 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · 0) = 0)
7150, 66, 703eqtrd 2659 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = 0)
7271sumeq2dv 14367 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0)
73 ssid 3603 . . . . . . . 8 (ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1))
7473a1i 11 . . . . . . 7 (𝜑 → (ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)))
7574orcd 407 . . . . . 6 (𝜑 → ((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin))
76 sumz 14386 . . . . . 6 (((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin) → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7775, 76syl 17 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7872, 77eqtrd 2655 . . . 4 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = 0)
7978oveq2d 6620 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0))
8023, 24, 14, 28, 9knoppndvlem5 32146 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℝ)
8180recnd 10012 . . . 4 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℂ)
8281addid1d 10180 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8379, 82eqtrd 2655 . 2 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8446, 83eqtrd 2655 1 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  wss 3555   class class class wbr 4613  cmpt 4673  dom cdm 5074  cfv 5847  (class class class)co 6604  Fincfn 7899  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  cmin 10210  -cneg 10211   / cdiv 10628  cn 10964  2c2 11014  0cn0 11236  cz 11321  cuz 11631  (,)cioo 12117  ...cfz 12268  cfl 12531  seqcseq 12741  cexp 12800  abscabs 13908  cli 14149  Σcsu 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ioo 12121  df-ico 12123  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ulm 24035
This theorem is referenced by:  knoppndvlem15  32156
  Copyright terms: Public domain W3C validator