Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem7 Structured version   Visualization version   GIF version

Theorem knoppndvlem7 32204
Description: Lemma for knoppndv 32220. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem7.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem7.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem7.m (𝜑𝑀 ∈ ℤ)
knoppndvlem7.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem7 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem7
StepHypRef Expression
1 knoppndvlem7.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppndvlem7.a . . . . 5 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
32a1i 11 . . . 4 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4 knoppndvlem7.n . . . . 5 (𝜑𝑁 ∈ ℕ)
5 knoppndvlem7.j . . . . . 6 (𝜑𝐽 ∈ ℕ0)
65nn0zd 11440 . . . . 5 (𝜑𝐽 ∈ ℤ)
7 knoppndvlem7.m . . . . 5 (𝜑𝑀 ∈ ℤ)
84, 6, 7knoppndvlem1 32198 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
93, 8eqeltrd 2698 . . 3 (𝜑𝐴 ∈ ℝ)
101, 9, 5knoppcnlem1 32178 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))))
112oveq2i 6626 . . . . . 6 (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
1211a1i 11 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
13 2cnd 11053 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
14 nnz 11359 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
154, 14syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615zcnd 11443 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1713, 16mulcld 10020 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℂ)
1817, 5expcld 12964 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
19 2ne0 11073 . . . . . . . . . . . 12 2 ≠ 0
2019a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ≠ 0)
21 0red 10001 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
22 1red 10015 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
2315zred 11442 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
24 0lt1 10510 . . . . . . . . . . . . . . 15 0 < 1
2524a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
26 nnge1 11006 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
274, 26syl 17 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑁)
2821, 22, 23, 25, 27ltletrd 10157 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑁)
2921, 28ltned 10133 . . . . . . . . . . . 12 (𝜑 → 0 ≠ 𝑁)
3029necomd 2845 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
3113, 16, 20, 30mulne0d 10639 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ≠ 0)
326znegcld 11444 . . . . . . . . . 10 (𝜑 → -𝐽 ∈ ℤ)
3317, 31, 32expclzd 12969 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
3433, 13, 20divcld 10761 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
357zcnd 11443 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3618, 34, 35mulassd 10023 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
3736eqcomd 2627 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3818, 33, 13, 20divassd 10796 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)))
3938eqcomd 2627 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2))
4017, 31, 6expnegd 12971 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
4140oveq2d 6631 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))))
4217, 31, 6expne0d 12970 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
4318, 42recidd 10756 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))) = 1)
4441, 43eqtrd 2655 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = 1)
4544oveq1d 6630 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (1 / 2))
4639, 45eqtrd 2655 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = (1 / 2))
4746oveq1d 6630 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((1 / 2) · 𝑀))
4835, 13, 20divrec2d 10765 . . . . . . 7 (𝜑 → (𝑀 / 2) = ((1 / 2) · 𝑀))
4948eqcomd 2627 . . . . . 6 (𝜑 → ((1 / 2) · 𝑀) = (𝑀 / 2))
5037, 47, 493eqtrd 2659 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = (𝑀 / 2))
5112, 50eqtrd 2655 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (𝑀 / 2))
5251fveq2d 6162 . . 3 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴)) = (𝑇‘(𝑀 / 2)))
5352oveq2d 6631 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
5410, 53eqtrd 2655 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4623  cmpt 4683  cfv 5857  (class class class)co 6615  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901   < clt 10034  cle 10035  cmin 10226  -cneg 10227   / cdiv 10644  cn 10980  2c2 11030  0cn0 11252  cz 11337  cfl 12547  cexp 12816  abscabs 13924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-n0 11253  df-z 11338  df-uz 11648  df-seq 12758  df-exp 12817
This theorem is referenced by:  knoppndvlem8  32205  knoppndvlem9  32206
  Copyright terms: Public domain W3C validator