Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem8 Structured version   Visualization version   GIF version

Theorem knoppndvlem8 33862
Description: Lemma for knoppndv 33877. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem8.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem8.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem8.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem8.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem8.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem8.m (𝜑𝑀 ∈ ℤ)
knoppndvlem8.n (𝜑𝑁 ∈ ℕ)
knoppndvlem8.1 (𝜑 → 2 ∥ 𝑀)
Assertion
Ref Expression
knoppndvlem8 (𝜑 → ((𝐹𝐴)‘𝐽) = 0)
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑥,𝑀   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem8
StepHypRef Expression
1 knoppndvlem8.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem8.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem8.a . . 3 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
4 knoppndvlem8.j . . 3 (𝜑𝐽 ∈ ℕ0)
5 knoppndvlem8.m . . 3 (𝜑𝑀 ∈ ℤ)
6 knoppndvlem8.n . . 3 (𝜑𝑁 ∈ ℕ)
71, 2, 3, 4, 5, 6knoppndvlem7 33861 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
8 knoppndvlem8.1 . . . . 5 (𝜑 → 2 ∥ 𝑀)
9 2z 12017 . . . . . . . 8 2 ∈ ℤ
109a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℤ)
11 2ne0 11744 . . . . . . . 8 2 ≠ 0
1211a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
1310, 12, 53jca 1124 . . . . . 6 (𝜑 → (2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑀 ∈ ℤ))
14 dvdsval2 15613 . . . . . 6 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑀 ∈ ℤ) → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
1513, 14syl 17 . . . . 5 (𝜑 → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
168, 15mpbid 234 . . . 4 (𝜑 → (𝑀 / 2) ∈ ℤ)
171, 16dnizeq0 33818 . . 3 (𝜑 → (𝑇‘(𝑀 / 2)) = 0)
1817oveq2d 7175 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶𝐽) · 0))
19 knoppndvlem8.c . . . . . . 7 (𝜑𝐶 ∈ (-1(,)1))
2019knoppndvlem3 33857 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2120simpld 497 . . . . 5 (𝜑𝐶 ∈ ℝ)
2221recnd 10672 . . . 4 (𝜑𝐶 ∈ ℂ)
2322, 4expcld 13513 . . 3 (𝜑 → (𝐶𝐽) ∈ ℂ)
2423mul01d 10842 . 2 (𝜑 → ((𝐶𝐽) · 0) = 0)
257, 18, 243eqtrd 2863 1 (𝜑 → ((𝐹𝐴)‘𝐽) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cmin 10873  -cneg 10874   / cdiv 11300  cn 11641  2c2 11695  0cn0 11900  cz 11984  (,)cioo 12741  cfl 13163  cexp 13432  abscabs 14596  cdvds 15610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ioo 12745  df-ico 12747  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-dvds 15611
This theorem is referenced by:  knoppndvlem10  33864
  Copyright terms: Public domain W3C validator