Mathbox for Asger C. Ipsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem9 Structured version   Visualization version   GIF version

Theorem knoppndvlem9 32150
 Description: Lemma for knoppndv 32164. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem9.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem9.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem9.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem9.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem9.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem9.m (𝜑𝑀 ∈ ℤ)
knoppndvlem9.n (𝜑𝑁 ∈ ℕ)
knoppndvlem9.1 (𝜑 → ¬ 2 ∥ 𝑀)
Assertion
Ref Expression
knoppndvlem9 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem9
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 knoppndvlem9.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem9.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem9.a . . 3 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
4 knoppndvlem9.j . . 3 (𝜑𝐽 ∈ ℕ0)
5 knoppndvlem9.m . . 3 (𝜑𝑀 ∈ ℤ)
6 knoppndvlem9.n . . 3 (𝜑𝑁 ∈ ℕ)
71, 2, 3, 4, 5, 6knoppndvlem7 32148 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
8 knoppndvlem9.1 . . . . 5 (𝜑 → ¬ 2 ∥ 𝑀)
9 odd2np1 14989 . . . . . 6 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
105, 9syl 17 . . . . 5 (𝜑 → (¬ 2 ∥ 𝑀 ↔ ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀))
118, 10mpbid 222 . . . 4 (𝜑 → ∃𝑚 ∈ ℤ ((2 · 𝑚) + 1) = 𝑀)
12 eqcom 2628 . . . . . . . . . . 11 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1312biimpi 206 . . . . . . . . . 10 (((2 · 𝑚) + 1) = 𝑀𝑀 = ((2 · 𝑚) + 1))
1413oveq1d 6619 . . . . . . . . 9 (((2 · 𝑚) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1514adantl 482 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
1615adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (((2 · 𝑚) + 1) / 2))
17 2cnd 11037 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 2 ∈ ℂ)
18 zcn 11326 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
1918adantl 482 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℤ) → 𝑚 ∈ ℂ)
2017, 19mulcld 10004 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → (2 · 𝑚) ∈ ℂ)
21 1cnd 10000 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 1 ∈ ℂ)
22 2ne0 11057 . . . . . . . . . . 11 2 ≠ 0
2322a1i 11 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → 2 ≠ 0)
2420, 21, 17, 23divdird 10783 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (((2 · 𝑚) / 2) + (1 / 2)))
2519, 17, 23divcan3d 10750 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℤ) → ((2 · 𝑚) / 2) = 𝑚)
2625oveq1d 6619 . . . . . . . . 9 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) / 2) + (1 / 2)) = (𝑚 + (1 / 2)))
2724, 26eqtrd 2655 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2827adantrr 752 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (((2 · 𝑚) + 1) / 2) = (𝑚 + (1 / 2)))
2916, 28eqtrd 2655 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑀 / 2) = (𝑚 + (1 / 2)))
3029fveq2d 6152 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (𝑇‘(𝑚 + (1 / 2))))
31 id 22 . . . . . . . 8 (𝑚 ∈ ℤ → 𝑚 ∈ ℤ)
321, 31dnizphlfeqhlf 32105 . . . . . . 7 (𝑚 ∈ ℤ → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3332adantl 482 . . . . . 6 ((𝜑𝑚 ∈ ℤ) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3433adantrr 752 . . . . 5 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑚 + (1 / 2))) = (1 / 2))
3530, 34eqtrd 2655 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℤ ∧ ((2 · 𝑚) + 1) = 𝑀)) → (𝑇‘(𝑀 / 2)) = (1 / 2))
3611, 35rexlimddv 3028 . . 3 (𝜑 → (𝑇‘(𝑀 / 2)) = (1 / 2))
3736oveq2d 6620 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(𝑀 / 2))) = ((𝐶𝐽) · (1 / 2)))
38 knoppndvlem9.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
3938knoppndvlem3 32144 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
4039simpld 475 . . . . . 6 (𝜑𝐶 ∈ ℝ)
4140recnd 10012 . . . . 5 (𝜑𝐶 ∈ ℂ)
4241, 4expcld 12948 . . . 4 (𝜑 → (𝐶𝐽) ∈ ℂ)
43 1cnd 10000 . . . 4 (𝜑 → 1 ∈ ℂ)
44 2cnd 11037 . . . 4 (𝜑 → 2 ∈ ℂ)
4522a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
4642, 43, 44, 45div12d 10781 . . 3 (𝜑 → ((𝐶𝐽) · (1 / 2)) = (1 · ((𝐶𝐽) / 2)))
4742, 44, 45divcld 10745 . . . 4 (𝜑 → ((𝐶𝐽) / 2) ∈ ℂ)
4847mulid2d 10002 . . 3 (𝜑 → (1 · ((𝐶𝐽) / 2)) = ((𝐶𝐽) / 2))
4946, 48eqtrd 2655 . 2 (𝜑 → ((𝐶𝐽) · (1 / 2)) = ((𝐶𝐽) / 2))
507, 37, 493eqtrd 2659 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) / 2))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908   class class class wbr 4613   ↦ cmpt 4673  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018   − cmin 10210  -cneg 10211   / cdiv 10628  ℕcn 10964  2c2 11014  ℕ0cn0 11236  ℤcz 11321  (,)cioo 12117  ⌊cfl 12531  ↑cexp 12800  abscabs 13908   ∥ cdvds 14907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ioo 12121  df-fl 12533  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-dvds 14908 This theorem is referenced by:  knoppndvlem10  32151
 Copyright terms: Public domain W3C validator