Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  konigsberglem3 Structured version   Visualization version   GIF version

Theorem konigsberglem3 41422
Description: Lemma 3 for konigsberg-av 41425: Vertex 3 has degree three. (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by Mario Carneiro, 28-Feb-2016.) (Revised by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
konigsberg-av.v 𝑉 = (0...3)
konigsberg-av.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg-av.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsberglem3 ((VtxDeg‘𝐺)‘3) = 3

Proof of Theorem konigsberglem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 6551 . . . . 5 (0...3) ∈ V
2 s6cli 13421 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V
32elexi 3181 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ V
41, 3opvtxfvi 40240 . . . 4 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (0...3)
54eqcomi 2614 . . 3 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
6 3nn0 11153 . . . 4 3 ∈ ℕ0
7 nn0fz0 12257 . . . 4 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
86, 7mpbi 218 . . 3 3 ∈ (0...3)
91, 3opiedgfvi 40241 . . . 4 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩
109eqcomi 2614 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)
11 s1cli 13179 . . . 4 ⟨“{2, 3}”⟩ ∈ Word V
12 df-s7 13391 . . . 4 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
13 eqid 2605 . . . . 5 (0...3) = (0...3)
14 eqid 2605 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
15 eqid 2605 . . . . 5 ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩ = ⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩⟩
1613, 14, 15konigsbergssiedgw 41417 . . . 4 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word V ∧ ⟨“{2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
172, 11, 12, 16mp3an 1415 . . 3 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
18 s5cli 13420 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V
1918elexi 3181 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ V
201, 19opvtxfvi 40240 . . . . . 6 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (0...3)
2120eqcomi 2614 . . . . 5 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
221, 19opiedgfvi 40241 . . . . . 6 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩
2322eqcomi 2614 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)
24 s2cli 13417 . . . . . 6 ⟨“{2, 3} {2, 3}”⟩ ∈ Word V
25 s5s2 13472 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)
2613, 14, 15konigsbergssiedgw 41417 . . . . . 6 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word V ∧ ⟨“{2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
2718, 24, 25, 26mp3an 1415 . . . . 5 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
28 s4cli 13419 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V
2928elexi 3181 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ V
301, 29opvtxfvi 40240 . . . . . . 7 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (0...3)
3130eqcomi 2614 . . . . . 6 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
321, 29opiedgfvi 40241 . . . . . . 7 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩
3332eqcomi 2614 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)
34 s3cli 13418 . . . . . . 7 ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
35 s4s3 13468 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)
3613, 14, 15konigsbergssiedgw 41417 . . . . . . 7 ((⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word V ∧ ⟨“{1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
3728, 34, 35, 36mp3an 1415 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
38 s3cli 13418 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V
3938elexi 3181 . . . . . . . . 9 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ V
401, 39opvtxfvi 40240 . . . . . . . 8 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (0...3)
4140eqcomi 2614 . . . . . . 7 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
421, 39opiedgfvi 40241 . . . . . . . 8 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = ⟨“{0, 1} {0, 2} {0, 3}”⟩
4342eqcomi 2614 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)
44 s4cli 13419 . . . . . . . 8 ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
45 s3s4 13470 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)
4613, 14, 15konigsbergssiedgw 41417 . . . . . . . 8 ((⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word V ∧ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
4738, 44, 45, 46mp3an 1415 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
48 s2cli 13417 . . . . . . . . . . . 12 ⟨“{0, 1} {0, 2}”⟩ ∈ Word V
4948elexi 3181 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2}”⟩ ∈ V
501, 49opvtxfvi 40240 . . . . . . . . . 10 (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (0...3)
5150eqcomi 2614 . . . . . . . . 9 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
521, 49opiedgfvi 40241 . . . . . . . . . 10 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = ⟨“{0, 1} {0, 2}”⟩
5352eqcomi 2614 . . . . . . . . 9 ⟨“{0, 1} {0, 2}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)
54 s5cli 13420 . . . . . . . . . 10 ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
55 s2s5 13471 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
5613, 14, 15konigsbergssiedgw 41417 . . . . . . . . . 10 ((⟨“{0, 1} {0, 2}”⟩ ∈ Word V ∧ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
5748, 54, 55, 56mp3an 1415 . . . . . . . . 9 ⟨“{0, 1} {0, 2}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
58 s1cli 13179 . . . . . . . . . . . . 13 ⟨“{0, 1}”⟩ ∈ Word V
5958elexi 3181 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ ∈ V
601, 59opvtxfvi 40240 . . . . . . . . . . 11 (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (0...3)
6160eqcomi 2614 . . . . . . . . . 10 (0...3) = (Vtx‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
621, 59opiedgfvi 40241 . . . . . . . . . . 11 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = ⟨“{0, 1}”⟩
6362eqcomi 2614 . . . . . . . . . 10 ⟨“{0, 1}”⟩ = (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)
64 s6cli 13421 . . . . . . . . . . 11 ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V
65 s1s6 13464 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)
6613, 14, 15konigsbergssiedgw 41417 . . . . . . . . . . 11 ((⟨“{0, 1}”⟩ ∈ Word V ∧ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word V ∧ ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩)) → ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
6758, 64, 65, 66mp3an 1415 . . . . . . . . . 10 ⟨“{0, 1}”⟩ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
68 0ex 4709 . . . . . . . . . . . . 13 ∅ ∈ V
691, 68opvtxfvi 40240 . . . . . . . . . . . 12 (Vtx‘⟨(0...3), ∅⟩) = (0...3)
7069eqcomi 2614 . . . . . . . . . . 11 (0...3) = (Vtx‘⟨(0...3), ∅⟩)
711, 68opiedgfvi 40241 . . . . . . . . . . . 12 (iEdg‘⟨(0...3), ∅⟩) = ∅
7271eqcomi 2614 . . . . . . . . . . 11 ∅ = (iEdg‘⟨(0...3), ∅⟩)
73 wrd0 13127 . . . . . . . . . . 11 ∅ ∈ Word {𝑥 ∈ (𝒫 (0...3) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
74 eqid 2605 . . . . . . . . . . . 12 ∅ = ∅
7570, 72vtxdg0e 40687 . . . . . . . . . . . 12 ((3 ∈ (0...3) ∧ ∅ = ∅) → ((VtxDeg‘⟨(0...3), ∅⟩)‘3) = 0)
768, 74, 75mp2an 703 . . . . . . . . . . 11 ((VtxDeg‘⟨(0...3), ∅⟩)‘3) = 0
77 0elfz 12256 . . . . . . . . . . . 12 (3 ∈ ℕ0 → 0 ∈ (0...3))
786, 77ax-mp 5 . . . . . . . . . . 11 0 ∈ (0...3)
79 3ne0 10958 . . . . . . . . . . . 12 3 ≠ 0
8079necomi 2831 . . . . . . . . . . 11 0 ≠ 3
81 1nn0 11151 . . . . . . . . . . . 12 1 ∈ ℕ0
82 1le3 11087 . . . . . . . . . . . 12 1 ≤ 3
83 elfz2nn0 12251 . . . . . . . . . . . 12 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
8481, 6, 82, 83mpbir3an 1236 . . . . . . . . . . 11 1 ∈ (0...3)
85 1re 9891 . . . . . . . . . . . 12 1 ∈ ℝ
86 1lt3 11039 . . . . . . . . . . . 12 1 < 3
8785, 86ltneii 9997 . . . . . . . . . . 11 1 ≠ 3
88 s0s1 13459 . . . . . . . . . . . 12 ⟨“{0, 1}”⟩ = (∅ ++ ⟨“{0, 1}”⟩)
8962, 88eqtri 2627 . . . . . . . . . . 11 (iEdg‘⟨(0...3), ⟨“{0, 1}”⟩⟩) = (∅ ++ ⟨“{0, 1}”⟩)
9070, 8, 72, 73, 76, 60, 78, 80, 84, 87, 89vdegp1ai-av 40750 . . . . . . . . . 10 ((VtxDeg‘⟨(0...3), ⟨“{0, 1}”⟩⟩)‘3) = 0
91 2nn0 11152 . . . . . . . . . . 11 2 ∈ ℕ0
92 2re 10933 . . . . . . . . . . . 12 2 ∈ ℝ
93 3re 10937 . . . . . . . . . . . 12 3 ∈ ℝ
94 2lt3 11038 . . . . . . . . . . . 12 2 < 3
9592, 93, 94ltleii 10007 . . . . . . . . . . 11 2 ≤ 3
96 elfz2nn0 12251 . . . . . . . . . . 11 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
9791, 6, 95, 96mpbir3an 1236 . . . . . . . . . 10 2 ∈ (0...3)
9892, 94ltneii 9997 . . . . . . . . . 10 2 ≠ 3
99 df-s2 13386 . . . . . . . . . . 11 ⟨“{0, 1} {0, 2}”⟩ = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
10052, 99eqtri 2627 . . . . . . . . . 10 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩) = (⟨“{0, 1}”⟩ ++ ⟨“{0, 2}”⟩)
10161, 8, 63, 67, 90, 50, 78, 80, 97, 98, 100vdegp1ai-av 40750 . . . . . . . . 9 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2}”⟩⟩)‘3) = 0
102 df-s3 13387 . . . . . . . . . 10 ⟨“{0, 1} {0, 2} {0, 3}”⟩ = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10342, 102eqtri 2627 . . . . . . . . 9 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩) = (⟨“{0, 1} {0, 2}”⟩ ++ ⟨“{0, 3}”⟩)
10451, 8, 53, 57, 101, 40, 78, 80, 103vdegp1ci-av 40752 . . . . . . . 8 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘3) = (0 + 1)
105 0p1e1 10975 . . . . . . . 8 (0 + 1) = 1
106104, 105eqtri 2627 . . . . . . 7 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3}”⟩⟩)‘3) = 1
107 df-s4 13388 . . . . . . . 8 ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10832, 107eqtri 2627 . . . . . . 7 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3}”⟩ ++ ⟨“{1, 2}”⟩)
10941, 8, 43, 47, 106, 30, 84, 87, 97, 98, 108vdegp1ai-av 40750 . . . . . 6 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩⟩)‘3) = 1
110 df-s5 13389 . . . . . . 7 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11122, 110eqtri 2627 . . . . . 6 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2}”⟩ ++ ⟨“{1, 2}”⟩)
11231, 8, 33, 37, 109, 20, 84, 87, 97, 98, 111vdegp1ai-av 40750 . . . . 5 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩⟩)‘3) = 1
113 df-s6 13390 . . . . . 6 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
1149, 113eqtri 2627 . . . . 5 (iEdg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2}”⟩ ++ ⟨“{2, 3}”⟩)
11521, 8, 23, 27, 112, 4, 97, 98, 114vdegp1ci-av 40752 . . . 4 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)‘3) = (1 + 1)
116 1p1e2 10977 . . . 4 (1 + 1) = 2
117115, 116eqtri 2627 . . 3 ((VtxDeg‘⟨(0...3), ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩⟩)‘3) = 2
118 konigsberg-av.v . . . 4 𝑉 = (0...3)
119 konigsberg-av.e . . . 4 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
120 konigsberg-av.g . . . 4 𝐺 = ⟨𝑉, 𝐸
121118, 119, 120konigsbergvtx 41412 . . 3 (Vtx‘𝐺) = (0...3)
122118, 119, 120konigsbergiedg 41413 . . . 4 (iEdg‘𝐺) = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
123122, 12eqtri 2627 . . 3 (iEdg‘𝐺) = (⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3}”⟩ ++ ⟨“{2, 3}”⟩)
1245, 8, 10, 17, 117, 121, 97, 98, 123vdegp1ci-av 40752 . 2 ((VtxDeg‘𝐺)‘3) = (2 + 1)
125 2p1e3 10994 . 2 (2 + 1) = 3
126124, 125eqtri 2627 1 ((VtxDeg‘𝐺)‘3) = 3
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1975  {crab 2895  Vcvv 3168  cdif 3532  c0 3869  𝒫 cpw 4103  {csn 4120  {cpr 4122  cop 4126   class class class wbr 4573  cfv 5786  (class class class)co 6523  0cc0 9788  1c1 9789   + caddc 9791  cle 9927  2c2 10913  3c3 10914  0cn0 11135  ...cfz 12148  #chash 12930  Word cword 13088   ++ cconcat 13090  ⟨“cs1 13091  ⟨“cs2 13379  ⟨“cs3 13380  ⟨“cs4 13381  ⟨“cs5 13382  ⟨“cs6 13383  ⟨“cs7 13384  Vtxcvtx 40227  iEdgciedg 40228  VtxDegcvtxdg 40679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-xadd 11775  df-fz 12149  df-fzo 12286  df-hash 12931  df-word 13096  df-concat 13098  df-s1 13099  df-s2 13386  df-s3 13387  df-s4 13388  df-s5 13389  df-s6 13390  df-s7 13391  df-xnn0 40196  df-vtx 40229  df-iedg 40230  df-vtxdg 40680
This theorem is referenced by:  konigsberglem4  41423
  Copyright terms: Public domain W3C validator