MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsbergssiedgw Structured version   Visualization version   GIF version

Theorem konigsbergssiedgw 26977
Description: Each subset of the indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsbergssiedgw ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem konigsbergssiedgw
StepHypRef Expression
1 konigsberg.v . . 3 𝑉 = (0...3)
2 konigsberg.e . . 3 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
3 konigsberg.g . . 3 𝐺 = ⟨𝑉, 𝐸
41, 2, 3konigsbergssiedgwpr 26976 . 2 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
5 wrdf 13249 . 2 (𝐴 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → 𝐴:(0..^(#‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
6 prprrab 13193 . . . . 5 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2}
7 2re 11034 . . . . . . . 8 2 ∈ ℝ
87eqlei2 10092 . . . . . . 7 ((#‘𝑥) = 2 → (#‘𝑥) ≤ 2)
98a1i 11 . . . . . 6 (𝑥 ∈ (𝒫 𝑉 ∖ {∅}) → ((#‘𝑥) = 2 → (#‘𝑥) ≤ 2))
109ss2rabi 3663 . . . . 5 {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
116, 10eqsstr3i 3615 . . . 4 {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}
12 fss 6013 . . . 4 ((𝐴:(0..^(#‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} ∧ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} ⊆ {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2}) → 𝐴:(0..^(#‘𝐴))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
1311, 12mpan2 706 . . 3 (𝐴:(0..^(#‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → 𝐴:(0..^(#‘𝐴))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
14 iswrdb 13250 . . 3 (𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ 𝐴:(0..^(#‘𝐴))⟶{𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
1513, 14sylibr 224 . 2 (𝐴:(0..^(#‘𝐴))⟶{𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
164, 5, 153syl 18 1 ((𝐴 ∈ Word V ∧ 𝐵 ∈ Word V ∧ 𝐸 = (𝐴 ++ 𝐵)) → 𝐴 ∈ Word {𝑥 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3186  cdif 3552  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148  {cpr 4150  cop 4154   class class class wbr 4613  wf 5843  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881  cle 10019  2c2 11014  3c3 11015  ...cfz 12268  ..^cfzo 12406  #chash 13057  Word cword 13230   ++ cconcat 13232  ⟨“cs7 13528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-concat 13240  df-s1 13241  df-s2 13530  df-s3 13531  df-s4 13532  df-s5 13533  df-s6 13534  df-s7 13535
This theorem is referenced by:  konigsberglem1  26980  konigsberglem2  26981  konigsberglem3  26982
  Copyright terms: Public domain W3C validator