MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigthlem Structured version   Visualization version   GIF version

Theorem konigthlem 9984
Description: Lemma for konigth 9985. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 (𝑀𝑖)
konigth.3 𝑃 = X𝑖𝐴 (𝑁𝑖)
konigth.4 𝐷 = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
konigth.5 𝐸 = (𝑖𝐴 ↦ (𝑒𝑖))
Assertion
Ref Expression
konigthlem (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Distinct variable groups:   𝐴,𝑎,𝑒,𝑓,𝑖   𝐷,𝑎,𝑒   𝐸,𝑎,𝑖   𝑀,𝑎,𝑓   𝑁,𝑎,𝑒,𝑓   𝑃,𝑎,𝑒,𝑓   𝑆,𝑎,𝑒,𝑓
Allowed substitution hints:   𝐷(𝑓,𝑖)   𝑃(𝑖)   𝑆(𝑖)   𝐸(𝑒,𝑓)   𝑀(𝑒,𝑖)   𝑁(𝑖)

Proof of Theorem konigthlem
StepHypRef Expression
1 fvex 6678 . . . . . . . . 9 (𝑀𝑖) ∈ V
2 fvex 6678 . . . . . . . . . . 11 ((𝑓𝑎)‘𝑖) ∈ V
3 eqid 2821 . . . . . . . . . . 11 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))
42, 3fnmpti 6486 . . . . . . . . . 10 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) Fn (𝑀𝑖)
51mptex 6980 . . . . . . . . . . . 12 (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) ∈ V
6 konigth.4 . . . . . . . . . . . . 13 𝐷 = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
76fvmpt2 6774 . . . . . . . . . . . 12 ((𝑖𝐴 ∧ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) ∈ V) → (𝐷𝑖) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
85, 7mpan2 689 . . . . . . . . . . 11 (𝑖𝐴 → (𝐷𝑖) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
98fneq1d 6441 . . . . . . . . . 10 (𝑖𝐴 → ((𝐷𝑖) Fn (𝑀𝑖) ↔ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)) Fn (𝑀𝑖)))
104, 9mpbiri 260 . . . . . . . . 9 (𝑖𝐴 → (𝐷𝑖) Fn (𝑀𝑖))
11 fnrndomg 9952 . . . . . . . . 9 ((𝑀𝑖) ∈ V → ((𝐷𝑖) Fn (𝑀𝑖) → ran (𝐷𝑖) ≼ (𝑀𝑖)))
121, 10, 11mpsyl 68 . . . . . . . 8 (𝑖𝐴 → ran (𝐷𝑖) ≼ (𝑀𝑖))
13 domsdomtr 8646 . . . . . . . 8 ((ran (𝐷𝑖) ≼ (𝑀𝑖) ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ran (𝐷𝑖) ≺ (𝑁𝑖))
1412, 13sylan 582 . . . . . . 7 ((𝑖𝐴 ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ran (𝐷𝑖) ≺ (𝑁𝑖))
15 sdomdif 8659 . . . . . . 7 (ran (𝐷𝑖) ≺ (𝑁𝑖) → ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
1614, 15syl 17 . . . . . 6 ((𝑖𝐴 ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
1716ralimiaa 3159 . . . . 5 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∀𝑖𝐴 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅)
18 konigth.1 . . . . . 6 𝐴 ∈ V
19 fvex 6678 . . . . . . 7 (𝑁𝑖) ∈ V
2019difexi 5225 . . . . . 6 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∈ V
2118, 20ac6c5 9898 . . . . 5 (∀𝑖𝐴 ((𝑁𝑖) ∖ ran (𝐷𝑖)) ≠ ∅ → ∃𝑒𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)))
22 equid 2015 . . . . . . 7 𝑓 = 𝑓
23 eldifi 4103 . . . . . . . . . . . . 13 ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑒𝑖) ∈ (𝑁𝑖))
24 fvex 6678 . . . . . . . . . . . . . . 15 (𝑒𝑖) ∈ V
25 konigth.5 . . . . . . . . . . . . . . . 16 𝐸 = (𝑖𝐴 ↦ (𝑒𝑖))
2625fvmpt2 6774 . . . . . . . . . . . . . . 15 ((𝑖𝐴 ∧ (𝑒𝑖) ∈ V) → (𝐸𝑖) = (𝑒𝑖))
2724, 26mpan2 689 . . . . . . . . . . . . . 14 (𝑖𝐴 → (𝐸𝑖) = (𝑒𝑖))
2827eleq1d 2897 . . . . . . . . . . . . 13 (𝑖𝐴 → ((𝐸𝑖) ∈ (𝑁𝑖) ↔ (𝑒𝑖) ∈ (𝑁𝑖)))
2923, 28syl5ibr 248 . . . . . . . . . . . 12 (𝑖𝐴 → ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸𝑖) ∈ (𝑁𝑖)))
3029ralimia 3158 . . . . . . . . . . 11 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖))
3124, 25fnmpti 6486 . . . . . . . . . . 11 𝐸 Fn 𝐴
3230, 31jctil 522 . . . . . . . . . 10 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸 Fn 𝐴 ∧ ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖)))
3318mptex 6980 . . . . . . . . . . . 12 (𝑖𝐴 ↦ (𝑒𝑖)) ∈ V
3425, 33eqeltri 2909 . . . . . . . . . . 11 𝐸 ∈ V
3534elixp 8462 . . . . . . . . . 10 (𝐸X𝑖𝐴 (𝑁𝑖) ↔ (𝐸 Fn 𝐴 ∧ ∀𝑖𝐴 (𝐸𝑖) ∈ (𝑁𝑖)))
3632, 35sylibr 236 . . . . . . . . 9 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → 𝐸X𝑖𝐴 (𝑁𝑖))
37 konigth.3 . . . . . . . . 9 𝑃 = X𝑖𝐴 (𝑁𝑖)
3836, 37eleqtrrdi 2924 . . . . . . . 8 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → 𝐸𝑃)
39 foelrn 6867 . . . . . . . . . 10 ((𝑓:𝑆onto𝑃𝐸𝑃) → ∃𝑎𝑆 𝐸 = (𝑓𝑎))
4039expcom 416 . . . . . . . . 9 (𝐸𝑃 → (𝑓:𝑆onto𝑃 → ∃𝑎𝑆 𝐸 = (𝑓𝑎)))
41 konigth.2 . . . . . . . . . . . . . . 15 𝑆 = 𝑖𝐴 (𝑀𝑖)
4241eleq2i 2904 . . . . . . . . . . . . . 14 (𝑎𝑆𝑎 𝑖𝐴 (𝑀𝑖))
43 eliun 4916 . . . . . . . . . . . . . 14 (𝑎 𝑖𝐴 (𝑀𝑖) ↔ ∃𝑖𝐴 𝑎 ∈ (𝑀𝑖))
4442, 43bitri 277 . . . . . . . . . . . . 13 (𝑎𝑆 ↔ ∃𝑖𝐴 𝑎 ∈ (𝑀𝑖))
45 nfra1 3219 . . . . . . . . . . . . . . 15 𝑖𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖))
46 nfv 1911 . . . . . . . . . . . . . . 15 𝑖 𝐸 = (𝑓𝑎)
4745, 46nfan 1896 . . . . . . . . . . . . . 14 𝑖(∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎))
48 nfv 1911 . . . . . . . . . . . . . 14 𝑖 ¬ 𝑓 = 𝑓
4927ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝐸𝑖) = (𝑒𝑖))
50 fveq1 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝐸 = (𝑓𝑎) → (𝐸𝑖) = ((𝑓𝑎)‘𝑖))
518fveq1d 6667 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖𝐴 → ((𝐷𝑖)‘𝑎) = ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎))
523fvmpt2 6774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ (𝑀𝑖) ∧ ((𝑓𝑎)‘𝑖) ∈ V) → ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎) = ((𝑓𝑎)‘𝑖))
532, 52mpan2 689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ (𝑀𝑖) → ((𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))‘𝑎) = ((𝑓𝑎)‘𝑖))
5451, 53sylan9eq 2876 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) = ((𝑓𝑎)‘𝑖))
5554eqcomd 2827 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝑓𝑎)‘𝑖) = ((𝐷𝑖)‘𝑎))
5650, 55sylan9eq 2876 . . . . . . . . . . . . . . . . . . . 20 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝐸𝑖) = ((𝐷𝑖)‘𝑎))
5749, 56eqtr3d 2858 . . . . . . . . . . . . . . . . . . 19 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) = ((𝐷𝑖)‘𝑎))
58 fnfvelrn 6843 . . . . . . . . . . . . . . . . . . . . 21 (((𝐷𝑖) Fn (𝑀𝑖) ∧ 𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
5910, 58sylan 582 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
6059adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ((𝐷𝑖)‘𝑎) ∈ ran (𝐷𝑖))
6157, 60eqeltrd 2913 . . . . . . . . . . . . . . . . . 18 ((𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) ∈ ran (𝐷𝑖))
62613adant1 1126 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → (𝑒𝑖) ∈ ran (𝐷𝑖))
63 simp1 1132 . . . . . . . . . . . . . . . . . 18 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)))
64 simp3l 1197 . . . . . . . . . . . . . . . . . 18 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → 𝑖𝐴)
65 rsp 3205 . . . . . . . . . . . . . . . . . . 19 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑖𝐴 → (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖))))
66 eldifn 4104 . . . . . . . . . . . . . . . . . . 19 ((𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖))
6765, 66syl6 35 . . . . . . . . . . . . . . . . . 18 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑖𝐴 → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖)))
6863, 64, 67sylc 65 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ¬ (𝑒𝑖) ∈ ran (𝐷𝑖))
6962, 68pm2.21dd 197 . . . . . . . . . . . . . . . 16 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎) ∧ (𝑖𝐴𝑎 ∈ (𝑀𝑖))) → ¬ 𝑓 = 𝑓)
70693expia 1117 . . . . . . . . . . . . . . 15 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → ((𝑖𝐴𝑎 ∈ (𝑀𝑖)) → ¬ 𝑓 = 𝑓))
7170expd 418 . . . . . . . . . . . . . 14 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (𝑖𝐴 → (𝑎 ∈ (𝑀𝑖) → ¬ 𝑓 = 𝑓)))
7247, 48, 71rexlimd 3317 . . . . . . . . . . . . 13 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (∃𝑖𝐴 𝑎 ∈ (𝑀𝑖) → ¬ 𝑓 = 𝑓))
7344, 72syl5bi 244 . . . . . . . . . . . 12 ((∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) ∧ 𝐸 = (𝑓𝑎)) → (𝑎𝑆 → ¬ 𝑓 = 𝑓))
7473ex 415 . . . . . . . . . . 11 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸 = (𝑓𝑎) → (𝑎𝑆 → ¬ 𝑓 = 𝑓)))
7574com23 86 . . . . . . . . . 10 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑎𝑆 → (𝐸 = (𝑓𝑎) → ¬ 𝑓 = 𝑓)))
7675rexlimdv 3283 . . . . . . . . 9 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (∃𝑎𝑆 𝐸 = (𝑓𝑎) → ¬ 𝑓 = 𝑓))
7740, 76syl9r 78 . . . . . . . 8 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝐸𝑃 → (𝑓:𝑆onto𝑃 → ¬ 𝑓 = 𝑓)))
7838, 77mpd 15 . . . . . . 7 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → (𝑓:𝑆onto𝑃 → ¬ 𝑓 = 𝑓))
7922, 78mt2i 139 . . . . . 6 (∀𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ 𝑓:𝑆onto𝑃)
8079exlimiv 1927 . . . . 5 (∃𝑒𝑖𝐴 (𝑒𝑖) ∈ ((𝑁𝑖) ∖ ran (𝐷𝑖)) → ¬ 𝑓:𝑆onto𝑃)
8117, 21, 803syl 18 . . . 4 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ 𝑓:𝑆onto𝑃)
8281nexdv 1933 . . 3 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ ∃𝑓 𝑓:𝑆onto𝑃)
8310dom 8641 . . . . . . . 8 ∅ ≼ (𝑀𝑖)
84 domsdomtr 8646 . . . . . . . 8 ((∅ ≼ (𝑀𝑖) ∧ (𝑀𝑖) ≺ (𝑁𝑖)) → ∅ ≺ (𝑁𝑖))
8583, 84mpan 688 . . . . . . 7 ((𝑀𝑖) ≺ (𝑁𝑖) → ∅ ≺ (𝑁𝑖))
86190sdom 8642 . . . . . . 7 (∅ ≺ (𝑁𝑖) ↔ (𝑁𝑖) ≠ ∅)
8785, 86sylib 220 . . . . . 6 ((𝑀𝑖) ≺ (𝑁𝑖) → (𝑁𝑖) ≠ ∅)
8887ralimi 3160 . . . . 5 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∀𝑖𝐴 (𝑁𝑖) ≠ ∅)
8937neeq1i 3080 . . . . . 6 (𝑃 ≠ ∅ ↔ X𝑖𝐴 (𝑁𝑖) ≠ ∅)
9019rgenw 3150 . . . . . . . . 9 𝑖𝐴 (𝑁𝑖) ∈ V
91 ixpexg 8480 . . . . . . . . 9 (∀𝑖𝐴 (𝑁𝑖) ∈ V → X𝑖𝐴 (𝑁𝑖) ∈ V)
9290, 91ax-mp 5 . . . . . . . 8 X𝑖𝐴 (𝑁𝑖) ∈ V
9337, 92eqeltri 2909 . . . . . . 7 𝑃 ∈ V
94930sdom 8642 . . . . . 6 (∅ ≺ 𝑃𝑃 ≠ ∅)
9518, 19ac9 9899 . . . . . 6 (∀𝑖𝐴 (𝑁𝑖) ≠ ∅ ↔ X𝑖𝐴 (𝑁𝑖) ≠ ∅)
9689, 94, 953bitr4i 305 . . . . 5 (∅ ≺ 𝑃 ↔ ∀𝑖𝐴 (𝑁𝑖) ≠ ∅)
9788, 96sylibr 236 . . . 4 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ∅ ≺ 𝑃)
9818, 1iunex 7663 . . . . . . 7 𝑖𝐴 (𝑀𝑖) ∈ V
9941, 98eqeltri 2909 . . . . . 6 𝑆 ∈ V
100 domtri 9972 . . . . . 6 ((𝑃 ∈ V ∧ 𝑆 ∈ V) → (𝑃𝑆 ↔ ¬ 𝑆𝑃))
10193, 99, 100mp2an 690 . . . . 5 (𝑃𝑆 ↔ ¬ 𝑆𝑃)
102101biimpri 230 . . . 4 𝑆𝑃𝑃𝑆)
103 fodomr 8662 . . . 4 ((∅ ≺ 𝑃𝑃𝑆) → ∃𝑓 𝑓:𝑆onto𝑃)
10497, 102, 103syl2an 597 . . 3 ((∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) ∧ ¬ 𝑆𝑃) → ∃𝑓 𝑓:𝑆onto𝑃)
10582, 104mtand 814 . 2 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → ¬ ¬ 𝑆𝑃)
106105notnotrd 135 1 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3495  cdif 3933  c0 4291   ciun 4912   class class class wbr 5059  cmpt 5139  ran crn 5551   Fn wfn 6345  ontowfo 6348  cfv 6350  Xcixp 8455  cdom 8501  csdm 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-ac2 9879
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-card 9362  df-acn 9365  df-ac 9536
This theorem is referenced by:  konigth  9985
  Copyright terms: Public domain W3C validator