Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqffn Structured version   Visualization version   GIF version

Theorem kqffn 21468
 Description: The topological indistinguishability map is a function on the base. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqffn (𝐽𝑉𝐹 Fn 𝑋)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqffn
StepHypRef Expression
1 ssrab2 3672 . . . . 5 {𝑦𝐽𝑥𝑦} ⊆ 𝐽
2 elpw2g 4797 . . . . 5 (𝐽𝑉 → ({𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽 ↔ {𝑦𝐽𝑥𝑦} ⊆ 𝐽))
31, 2mpbiri 248 . . . 4 (𝐽𝑉 → {𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽)
43adantr 481 . . 3 ((𝐽𝑉𝑥𝑋) → {𝑦𝐽𝑥𝑦} ∈ 𝒫 𝐽)
5 kqval.2 . . 3 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
64, 5fmptd 6351 . 2 (𝐽𝑉𝐹:𝑋⟶𝒫 𝐽)
7 ffn 6012 . 2 (𝐹:𝑋⟶𝒫 𝐽𝐹 Fn 𝑋)
86, 7syl 17 1 (𝐽𝑉𝐹 Fn 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1987  {crab 2912   ⊆ wss 3560  𝒫 cpw 4136   ↦ cmpt 4683   Fn wfn 5852  ⟶wf 5853 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-fv 5865 This theorem is referenced by:  kqtopon  21470  kqid  21471  ist0-4  21472  kqfvima  21473  kqsat  21474  kqdisj  21475  kqcldsat  21476  kqopn  21477  kqcld  21478  kqt0lem  21479  isr0  21480  r0cld  21481  regr1lem2  21483  kqreglem1  21484  kqreglem2  21485  kqnrmlem1  21486  kqnrmlem2  21487
 Copyright terms: Public domain W3C validator