MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqtopon Structured version   Visualization version   GIF version

Theorem kqtopon 21524
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqtopon (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqtopon
StepHypRef Expression
1 kqval.2 . . 3 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqval 21523 . 2 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
31kqffn 21522 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
4 dffn4 6119 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
53, 4sylib 208 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋onto→ran 𝐹)
6 qtoptopon 21501 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹))
75, 6mpdan 702 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹))
82, 7eqeltrd 2700 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1482  wcel 1989  {crab 2915  cmpt 4727  ran crn 5113   Fn wfn 5881  ontowfo 5884  cfv 5886  (class class class)co 6647   qTop cqtop 16157  TopOnctopon 20709  KQckq 21490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-qtop 16161  df-top 20693  df-topon 20710  df-kq 21491
This theorem is referenced by:  kqt0lem  21533  isr0  21534  r0cld  21535  regr1lem2  21537  kqreglem1  21538  kqreglem2  21539  kqnrmlem1  21540  kqnrmlem2  21541  kqtop  21542
  Copyright terms: Public domain W3C validator