MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latdisd Structured version   Visualization version   GIF version

Theorem latdisd 17802
Description: In a lattice, joins distribute over meets if and only if meets distribute over joins; the distributive property is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
latdisd.b 𝐵 = (Base‘𝐾)
latdisd.j = (join‘𝐾)
latdisd.m = (meet‘𝐾)
Assertion
Ref Expression
latdisd (𝐾 ∈ Lat → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑥,𝐵,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝑥, ,𝑦,𝑧

Proof of Theorem latdisd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 latdisd.b . . . 4 𝐵 = (Base‘𝐾)
2 latdisd.j . . . 4 = (join‘𝐾)
3 latdisd.m . . . 4 = (meet‘𝐾)
41, 2, 3latdisdlem 17801 . . 3 (𝐾 ∈ Lat → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)) → ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))))
5 eqid 2823 . . . . 5 (ODual‘𝐾) = (ODual‘𝐾)
65odulat 17757 . . . 4 (𝐾 ∈ Lat → (ODual‘𝐾) ∈ Lat)
75, 1odubas 17745 . . . . 5 𝐵 = (Base‘(ODual‘𝐾))
85, 3odujoin 17754 . . . . 5 = (join‘(ODual‘𝐾))
95, 2odumeet 17752 . . . . 5 = (meet‘(ODual‘𝐾))
107, 8, 9latdisdlem 17801 . . . 4 ((ODual‘𝐾) ∈ Lat → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
116, 10syl 17 . . 3 (𝐾 ∈ Lat → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
124, 11impbid 214 . 2 (𝐾 ∈ Lat → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)) ↔ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))))
13 oveq1 7165 . . . 4 (𝑢 = 𝑥 → (𝑢 (𝑣 𝑤)) = (𝑥 (𝑣 𝑤)))
14 oveq1 7165 . . . . 5 (𝑢 = 𝑥 → (𝑢 𝑣) = (𝑥 𝑣))
15 oveq1 7165 . . . . 5 (𝑢 = 𝑥 → (𝑢 𝑤) = (𝑥 𝑤))
1614, 15oveq12d 7176 . . . 4 (𝑢 = 𝑥 → ((𝑢 𝑣) (𝑢 𝑤)) = ((𝑥 𝑣) (𝑥 𝑤)))
1713, 16eqeq12d 2839 . . 3 (𝑢 = 𝑥 → ((𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) ↔ (𝑥 (𝑣 𝑤)) = ((𝑥 𝑣) (𝑥 𝑤))))
18 oveq1 7165 . . . . 5 (𝑣 = 𝑦 → (𝑣 𝑤) = (𝑦 𝑤))
1918oveq2d 7174 . . . 4 (𝑣 = 𝑦 → (𝑥 (𝑣 𝑤)) = (𝑥 (𝑦 𝑤)))
20 oveq2 7166 . . . . 5 (𝑣 = 𝑦 → (𝑥 𝑣) = (𝑥 𝑦))
2120oveq1d 7173 . . . 4 (𝑣 = 𝑦 → ((𝑥 𝑣) (𝑥 𝑤)) = ((𝑥 𝑦) (𝑥 𝑤)))
2219, 21eqeq12d 2839 . . 3 (𝑣 = 𝑦 → ((𝑥 (𝑣 𝑤)) = ((𝑥 𝑣) (𝑥 𝑤)) ↔ (𝑥 (𝑦 𝑤)) = ((𝑥 𝑦) (𝑥 𝑤))))
23 oveq2 7166 . . . . 5 (𝑤 = 𝑧 → (𝑦 𝑤) = (𝑦 𝑧))
2423oveq2d 7174 . . . 4 (𝑤 = 𝑧 → (𝑥 (𝑦 𝑤)) = (𝑥 (𝑦 𝑧)))
25 oveq2 7166 . . . . 5 (𝑤 = 𝑧 → (𝑥 𝑤) = (𝑥 𝑧))
2625oveq2d 7174 . . . 4 (𝑤 = 𝑧 → ((𝑥 𝑦) (𝑥 𝑤)) = ((𝑥 𝑦) (𝑥 𝑧)))
2724, 26eqeq12d 2839 . . 3 (𝑤 = 𝑧 → ((𝑥 (𝑦 𝑤)) = ((𝑥 𝑦) (𝑥 𝑤)) ↔ (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
2817, 22, 27cbvral3vw 3465 . 2 (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
2912, 28syl6bb 289 1 (𝐾 ∈ Lat → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wral 3140  cfv 6357  (class class class)co 7158  Basecbs 16485  joincjn 17556  meetcmee 17557  Latclat 17657  ODualcodu 17740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-dec 12102  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ple 16587  df-proset 17540  df-poset 17558  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-lat 17658  df-odu 17741
This theorem is referenced by:  odudlatb  17808
  Copyright terms: Public domain W3C validator