MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjcom Structured version   Visualization version   GIF version

Theorem latjcom 17280
Description: The join of a lattice commutes. (chjcom 28695 analog.) (Contributed by NM, 16-Sep-2011.)
Hypotheses
Ref Expression
latjcom.b 𝐵 = (Base‘𝐾)
latjcom.j = (join‘𝐾)
Assertion
Ref Expression
latjcom ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem latjcom
StepHypRef Expression
1 opelxpi 5305 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
213adant1 1125 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
3 latjcom.b . . . . . . 7 𝐵 = (Base‘𝐾)
4 latjcom.j . . . . . . 7 = (join‘𝐾)
5 eqid 2760 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
63, 4, 5islat 17268 . . . . . 6 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))))
7 simprl 811 . . . . . 6 ((𝐾 ∈ Poset ∧ (dom = (𝐵 × 𝐵) ∧ dom (meet‘𝐾) = (𝐵 × 𝐵))) → dom = (𝐵 × 𝐵))
86, 7sylbi 207 . . . . 5 (𝐾 ∈ Lat → dom = (𝐵 × 𝐵))
983ad2ant1 1128 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → dom = (𝐵 × 𝐵))
102, 9eleqtrrd 2842 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ dom )
11 opelxpi 5305 . . . . . 6 ((𝑌𝐵𝑋𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1211ancoms 468 . . . . 5 ((𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
13123adant1 1125 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ (𝐵 × 𝐵))
1413, 9eleqtrrd 2842 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ⟨𝑌, 𝑋⟩ ∈ dom )
1510, 14jca 555 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom ))
16 latpos 17271 . . 3 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
173, 4joincom 17251 . . 3 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1816, 17syl3anl1 1521 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) ∧ (⟨𝑋, 𝑌⟩ ∈ dom ∧ ⟨𝑌, 𝑋⟩ ∈ dom )) → (𝑋 𝑌) = (𝑌 𝑋))
1915, 18mpdan 705 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  cop 4327   × cxp 5264  dom cdm 5266  cfv 6049  (class class class)co 6814  Basecbs 16079  Posetcpo 17161  joincjn 17165  meetcmee 17166  Latclat 17266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-lub 17195  df-join 17197  df-lat 17267
This theorem is referenced by:  latleeqj2  17285  latjlej2  17287  latnle  17306  latmlej12  17312  latj12  17317  latj32  17318  latj13  17319  latj31  17320  latj4rot  17323  mod2ile  17327  latdisdlem  17410  olj02  35034  omllaw4  35054  cmt2N  35058  cmtbr3N  35062  cvlexch2  35137  cvlexchb2  35139  cvlatexchb2  35143  cvlatexch2  35145  cvlatexch3  35146  cvlatcvr2  35150  cvlsupr2  35151  cvlsupr7  35156  cvlsupr8  35157  hlatjcom  35175  hlrelat5N  35208  cvrval5  35222  cvrexch  35227  cvratlem  35228  cvrat  35229  2atlt  35246  cvrat3  35249  cvrat4  35250  cvrat42  35251  4noncolr3  35260  1cvrat  35283  3atlem1  35290  4atlem4d  35409  4atlem12  35419  paddcom  35620  paddasslem2  35628  pmapjat2  35661  atmod2i1  35668  atmod2i2  35669  llnmod2i2  35670  atmod4i1  35673  atmod4i2  35674  dalawlem4  35681  dalawlem9  35686  dalawlem12  35689  lhpjat2  35828  lhple  35849  trljat1  35974  trljat2  35975  cdlemc1  35999  cdlemc6  36004  cdlemd1  36006  cdleme5  36048  cdleme9  36061  cdleme10  36062  cdleme19e  36115  trlcolem  36534  trljco2  36549  cdlemk7  36656  cdlemk7u  36678  cdlemkid1  36730  dih1  37095  dihjatc2N  37121
  Copyright terms: Public domain W3C validator