Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjidm Structured version   Visualization version   GIF version

Theorem latjidm 17275
 Description: Lattice join is idempotent. (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
latidm.b 𝐵 = (Base‘𝐾)
latidm.j = (join‘𝐾)
Assertion
Ref Expression
latjidm ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)

Proof of Theorem latjidm
StepHypRef Expression
1 latidm.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2760 . 2 (le‘𝐾) = (le‘𝐾)
3 simpl 474 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝐾 ∈ Lat)
4 latidm.j . . . 4 = (join‘𝐾)
51, 4latjcl 17252 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
653anidm23 1532 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) ∈ 𝐵)
7 simpr 479 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋𝐵)
81, 2latref 17254 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)𝑋)
91, 2, 4latjle12 17263 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑋𝐵)) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ (𝑋 𝑋)(le‘𝐾)𝑋))
103, 7, 7, 7, 9syl13anc 1479 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → ((𝑋(le‘𝐾)𝑋𝑋(le‘𝐾)𝑋) ↔ (𝑋 𝑋)(le‘𝐾)𝑋))
118, 8, 10mpbi2and 994 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋)(le‘𝐾)𝑋)
121, 2, 4latlej1 17261 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑋𝐵) → 𝑋(le‘𝐾)(𝑋 𝑋))
13123anidm23 1532 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋(le‘𝐾)(𝑋 𝑋))
141, 2, 3, 6, 7, 11, 13latasymd 17258 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  Basecbs 16059  lecple 16150  joincjn 17145  Latclat 17246 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-preset 17129  df-poset 17147  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-lat 17247 This theorem is referenced by:  lubsn  17295  latjjdi  17304  latjjdir  17305  cvlsupr2  35133  hlatjidm  35158  cvrat3  35231  snatpsubN  35539  dalawlem7  35666  cdleme11  36060  cdleme23b  36140  cdlemg33a  36496  trljco  36530  doca2N  36917  djajN  36928
 Copyright terms: Public domain W3C validator