MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqj1 Structured version   Visualization version   GIF version

Theorem latleeqj1 16984
Description: Less-than-or-equal-to in terms of join. (chlejb1 28220 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latleeqj1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑌))

Proof of Theorem latleeqj1
StepHypRef Expression
1 latlej.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latlej.l . . . . . . 7 = (le‘𝐾)
31, 2latref 16974 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → 𝑌 𝑌)
433adant2 1078 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 𝑌)
54biantrud 528 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌𝑌 𝑌)))
6 simp1 1059 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
7 simp2 1060 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 simp3 1061 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
9 latlej.j . . . . . 6 = (join‘𝐾)
101, 2, 9latjle12 16983 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑌𝐵)) → ((𝑋 𝑌𝑌 𝑌) ↔ (𝑋 𝑌) 𝑌))
116, 7, 8, 8, 10syl13anc 1325 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑌) ↔ (𝑋 𝑌) 𝑌))
125, 11bitrd 268 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) 𝑌))
131, 2, 9latlej2 16982 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (𝑋 𝑌))
1413biantrud 528 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) 𝑌 ↔ ((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌))))
1512, 14bitrd 268 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌))))
16 latpos 16971 . . . 4 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
17163ad2ant1 1080 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
181, 9latjcl 16972 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
191, 2posasymb 16873 . . 3 ((𝐾 ∈ Poset ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑌))
2017, 18, 8, 19syl3anc 1323 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑌))
2115, 20bitrd 268 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  Posetcpo 16861  joincjn 16865  Latclat 16966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-lat 16967
This theorem is referenced by:  latleeqj2  16985  latnle  17006  cvlsupr2  34110  hlrelat5N  34167  3dim3  34235  dalem-cly  34437  dalem44  34482  cdleme30a  35146
  Copyright terms: Public domain W3C validator