Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  latm4 Structured version   Visualization version   GIF version

Theorem latm4 35023
Description: Rearrangement of lattice meet of 4 classes. (in4 3972 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
olmass.b 𝐵 = (Base‘𝐾)
olmass.m = (meet‘𝐾)
Assertion
Ref Expression
latm4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = ((𝑋 𝑍) (𝑌 𝑊)))

Proof of Theorem latm4
StepHypRef Expression
1 simp1 1131 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ OL)
2 simp2r 1243 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
3 simp3l 1244 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
4 simp3r 1245 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
5 olmass.b . . . . 5 𝐵 = (Base‘𝐾)
6 olmass.m . . . . 5 = (meet‘𝐾)
75, 6latm12 35020 . . . 4 ((𝐾 ∈ OL ∧ (𝑌𝐵𝑍𝐵𝑊𝐵)) → (𝑌 (𝑍 𝑊)) = (𝑍 (𝑌 𝑊)))
81, 2, 3, 4, 7syl13anc 1479 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 (𝑍 𝑊)) = (𝑍 (𝑌 𝑊)))
98oveq2d 6829 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 (𝑌 (𝑍 𝑊))) = (𝑋 (𝑍 (𝑌 𝑊))))
10 simp2l 1242 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
11 ollat 35003 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ Lat)
12113ad2ant1 1128 . . . 4 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ Lat)
135, 6latmcl 17253 . . . 4 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑊𝐵) → (𝑍 𝑊) ∈ 𝐵)
1412, 3, 4, 13syl3anc 1477 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑊) ∈ 𝐵)
155, 6latmassOLD 35019 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑍 𝑊) ∈ 𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = (𝑋 (𝑌 (𝑍 𝑊))))
161, 10, 2, 14, 15syl13anc 1479 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = (𝑋 (𝑌 (𝑍 𝑊))))
175, 6latmcl 17253 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
1812, 2, 4, 17syl3anc 1477 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) ∈ 𝐵)
195, 6latmassOLD 35019 . . 3 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑊) ∈ 𝐵)) → ((𝑋 𝑍) (𝑌 𝑊)) = (𝑋 (𝑍 (𝑌 𝑊))))
201, 10, 3, 18, 19syl13anc 1479 . 2 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) (𝑌 𝑊)) = (𝑋 (𝑍 (𝑌 𝑊))))
219, 16, 203eqtr4d 2804 1 ((𝐾 ∈ OL ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌) (𝑍 𝑊)) = ((𝑋 𝑍) (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  Basecbs 16059  meetcmee 17146  Latclat 17246  OLcol 34964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-preset 17129  df-poset 17147  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-lat 17247  df-oposet 34966  df-ol 34968
This theorem is referenced by:  latmmdiN  35024  latmmdir  35025
  Copyright terms: Public domain W3C validator