![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmle1 | Structured version Visualization version GIF version |
Description: A meet is less than or equal to its first argument. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmle1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | simp1 1131 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
5 | simp2 1132 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | simp3 1133 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
7 | eqid 2760 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
8 | 1, 7, 3, 4, 5, 6 | latcl2 17249 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (〈𝑋, 𝑌〉 ∈ dom (join‘𝐾) ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) |
9 | 8 | simprd 482 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ dom ∧ ) |
10 | 1, 2, 3, 4, 5, 6, 9 | lemeet1 17227 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 〈cop 4327 class class class wbr 4804 dom cdm 5266 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 lecple 16150 joincjn 17145 meetcmee 17146 Latclat 17246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-glb 17176 df-meet 17178 df-lat 17247 |
This theorem is referenced by: latleeqm1 17280 latmlem1 17282 latnlemlt 17285 latmidm 17287 latabs1 17288 latledi 17290 latmlej11 17291 oldmm1 35007 cmtbr3N 35044 cmtbr4N 35045 lecmtN 35046 cvrat4 35232 2llnmat 35313 llnmlplnN 35328 dalem3 35453 dalem27 35488 dalem54 35515 dalem55 35516 2lnat 35573 cdlema1N 35580 llnexchb2lem 35657 dalawlem1 35660 dalawlem6 35665 dalawlem11 35670 dalawlem12 35671 4atexlemunv 35855 4atexlemc 35858 4atexlemnclw 35859 4atexlemex2 35860 4atexlemcnd 35861 lautm 35883 trlval3 35977 cdlemeulpq 36010 cdleme3h 36025 cdleme4a 36029 cdleme9 36043 cdleme11g 36055 cdleme13 36062 cdleme16e 36072 cdlemednpq 36089 cdleme19b 36094 cdleme20e 36103 cdleme20j 36108 cdleme22cN 36132 cdleme22e 36134 cdleme22eALTN 36135 cdleme22g 36138 cdleme35b 36240 cdleme35f 36244 cdlemeg46vrg 36317 cdlemg11b 36432 cdlemg12f 36438 cdlemg19a 36473 cdlemg31a 36487 cdlemk12 36640 cdlemkole 36643 cdlemk12u 36662 cdlemk37 36704 dia2dimlem1 36855 dihopelvalcpre 37039 dihmeetlem1N 37081 dihglblem5apreN 37082 dihglblem2N 37085 dihmeetlem2N 37090 |
Copyright terms: Public domain | W3C validator |