MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlem12 Structured version   Visualization version   GIF version

Theorem latmlem12 16999
Description: Add join to both sides of a lattice ordering. (ss2in 3823 analog.) (Contributed by NM, 10-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latmlem12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌𝑍 𝑊) → (𝑋 𝑍) (𝑌 𝑊)))

Proof of Theorem latmlem12
StepHypRef Expression
1 simp1 1059 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐾 ∈ Lat)
2 simp2l 1085 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
3 simp2r 1086 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
4 simp3l 1087 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
5 latmle.b . . . 4 𝐵 = (Base‘𝐾)
6 latmle.l . . . 4 = (le‘𝐾)
7 latmle.m . . . 4 = (meet‘𝐾)
85, 6, 7latmlem1 16997 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
91, 2, 3, 4, 8syl13anc 1325 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑌 → (𝑋 𝑍) (𝑌 𝑍)))
10 simp3r 1088 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6, 7latmlem2 16998 . . 3 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑊𝐵𝑌𝐵)) → (𝑍 𝑊 → (𝑌 𝑍) (𝑌 𝑊)))
121, 4, 10, 3, 11syl13anc 1325 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 𝑊 → (𝑌 𝑍) (𝑌 𝑊)))
135, 7latmcl 16968 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
141, 2, 4, 13syl3anc 1323 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) ∈ 𝐵)
155, 7latmcl 16968 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
161, 3, 4, 15syl3anc 1323 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑍) ∈ 𝐵)
175, 7latmcl 16968 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑊𝐵) → (𝑌 𝑊) ∈ 𝐵)
181, 3, 10, 17syl3anc 1323 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) ∈ 𝐵)
195, 6lattr 16972 . . 3 ((𝐾 ∈ Lat ∧ ((𝑋 𝑍) ∈ 𝐵 ∧ (𝑌 𝑍) ∈ 𝐵 ∧ (𝑌 𝑊) ∈ 𝐵)) → (((𝑋 𝑍) (𝑌 𝑍) ∧ (𝑌 𝑍) (𝑌 𝑊)) → (𝑋 𝑍) (𝑌 𝑊)))
201, 14, 16, 18, 19syl13anc 1325 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (((𝑋 𝑍) (𝑌 𝑍) ∧ (𝑌 𝑍) (𝑌 𝑊)) → (𝑋 𝑍) (𝑌 𝑊)))
219, 12, 20syl2and 500 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑌𝑍 𝑊) → (𝑋 𝑍) (𝑌 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1992   class class class wbr 4618  cfv 5850  (class class class)co 6605  Basecbs 15776  lecple 15864  meetcmee 16861  Latclat 16961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-poset 16862  df-lub 16890  df-glb 16891  df-join 16892  df-meet 16893  df-lat 16962
This theorem is referenced by:  dalem10  34406  dalem55  34460  dalawlem3  34606  dalawlem7  34610  dalawlem11  34614  dalawlem12  34615  cdlemk51  35688
  Copyright terms: Public domain W3C validator