![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > latmrot | Structured version Visualization version GIF version |
Description: Rotate lattice meet of 3 classes. (Contributed by NM, 9-Oct-2012.) |
Ref | Expression |
---|---|
olmass.b | ⊢ 𝐵 = (Base‘𝐾) |
olmass.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmrot | ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = ((𝑍 ∧ 𝑋) ∧ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ollat 35003 | . . . 4 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 472 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) |
3 | simpr1 1234 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
4 | simpr2 1236 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
5 | olmass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | olmass.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
7 | 5, 6 | latmcl 17253 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
8 | 2, 3, 4, 7 | syl3anc 1477 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
9 | simpr3 1238 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
10 | 5, 6 | latmcom 17276 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = (𝑍 ∧ (𝑋 ∧ 𝑌))) |
11 | 2, 8, 9, 10 | syl3anc 1477 | . 2 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = (𝑍 ∧ (𝑋 ∧ 𝑌))) |
12 | simpl 474 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ OL) | |
13 | 5, 6 | latmassOLD 35019 | . . 3 ⊢ ((𝐾 ∈ OL ∧ (𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑍 ∧ 𝑋) ∧ 𝑌) = (𝑍 ∧ (𝑋 ∧ 𝑌))) |
14 | 12, 9, 3, 4, 13 | syl13anc 1479 | . 2 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑍 ∧ 𝑋) ∧ 𝑌) = (𝑍 ∧ (𝑋 ∧ 𝑌))) |
15 | 11, 14 | eqtr4d 2797 | 1 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑍) = ((𝑍 ∧ 𝑋) ∧ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 meetcmee 17146 Latclat 17246 OLcol 34964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-preset 17129 df-poset 17147 df-lub 17175 df-glb 17176 df-join 17177 df-meet 17178 df-lat 17247 df-oposet 34966 df-ol 34968 |
This theorem is referenced by: cdleme15b 36065 |
Copyright terms: Public domain | W3C validator |