Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcnvle Structured version   Visualization version   GIF version

Theorem lautcnvle 37227
Description: Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautcnvle.b 𝐵 = (Base‘𝐾)
lautcnvle.l = (le‘𝐾)
lautcnvle.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautcnvle (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautcnvle
StepHypRef Expression
1 simpl 485 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐾𝑉𝐹𝐼))
2 lautcnvle.b . . . . . 6 𝐵 = (Base‘𝐾)
3 lautcnvle.i . . . . . 6 𝐼 = (LAut‘𝐾)
42, 3laut1o 37223 . . . . 5 ((𝐾𝑉𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
54adantr 483 . . . 4 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → 𝐹:𝐵1-1-onto𝐵)
6 simprl 769 . . . 4 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
7 f1ocnvdm 7043 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
85, 6, 7syl2anc 586 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
9 simprr 771 . . . 4 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
10 f1ocnvdm 7043 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
115, 9, 10syl2anc 586 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
12 lautcnvle.l . . . 4 = (le‘𝐾)
132, 12, 3lautle 37222 . . 3 (((𝐾𝑉𝐹𝐼) ∧ ((𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵)) → ((𝐹𝑋) (𝐹𝑌) ↔ (𝐹‘(𝐹𝑋)) (𝐹‘(𝐹𝑌))))
141, 8, 11, 13syl12anc 834 . 2 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌) ↔ (𝐹‘(𝐹𝑋)) (𝐹‘(𝐹𝑌))))
15 f1ocnvfv2 7036 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑋𝐵) → (𝐹‘(𝐹𝑋)) = 𝑋)
165, 6, 15syl2anc 586 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹𝑋)) = 𝑋)
17 f1ocnvfv2 7036 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑌𝐵) → (𝐹‘(𝐹𝑌)) = 𝑌)
185, 9, 17syl2anc 586 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹𝑌)) = 𝑌)
1916, 18breq12d 5081 . 2 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹‘(𝐹𝑋)) (𝐹‘(𝐹𝑌)) ↔ 𝑋 𝑌))
2014, 19bitr2d 282 1 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068  ccnv 5556  1-1-ontowf1o 6356  cfv 6357  Basecbs 16485  lecple 16574  LAutclaut 37123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-laut 37127
This theorem is referenced by:  lautcnv  37228  lautj  37231  lautm  37232  ltrncnvleN  37268  ltrneq2  37286
  Copyright terms: Public domain W3C validator