Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcnvle Structured version   Visualization version   GIF version

Theorem lautcnvle 34841
Description: Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautcnvle.b 𝐵 = (Base‘𝐾)
lautcnvle.l = (le‘𝐾)
lautcnvle.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautcnvle (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautcnvle
StepHypRef Expression
1 simpl 473 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐾𝑉𝐹𝐼))
2 lautcnvle.b . . . . . 6 𝐵 = (Base‘𝐾)
3 lautcnvle.i . . . . . 6 𝐼 = (LAut‘𝐾)
42, 3laut1o 34837 . . . . 5 ((𝐾𝑉𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
54adantr 481 . . . 4 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → 𝐹:𝐵1-1-onto𝐵)
6 simprl 793 . . . 4 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
7 f1ocnvdm 6495 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
85, 6, 7syl2anc 692 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
9 simprr 795 . . . 4 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
10 f1ocnvdm 6495 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
115, 9, 10syl2anc 692 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
12 lautcnvle.l . . . 4 = (le‘𝐾)
132, 12, 3lautle 34836 . . 3 (((𝐾𝑉𝐹𝐼) ∧ ((𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵)) → ((𝐹𝑋) (𝐹𝑌) ↔ (𝐹‘(𝐹𝑋)) (𝐹‘(𝐹𝑌))))
141, 8, 11, 13syl12anc 1321 . 2 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) (𝐹𝑌) ↔ (𝐹‘(𝐹𝑋)) (𝐹‘(𝐹𝑌))))
15 f1ocnvfv2 6488 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑋𝐵) → (𝐹‘(𝐹𝑋)) = 𝑋)
165, 6, 15syl2anc 692 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹𝑋)) = 𝑋)
17 f1ocnvfv2 6488 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑌𝐵) → (𝐹‘(𝐹𝑌)) = 𝑌)
185, 9, 17syl2anc 692 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝐹‘(𝐹𝑌)) = 𝑌)
1916, 18breq12d 4631 . 2 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹‘(𝐹𝑋)) (𝐹‘(𝐹𝑌)) ↔ 𝑋 𝑌))
2014, 19bitr2d 269 1 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992   class class class wbr 4618  ccnv 5078  1-1-ontowf1o 5849  cfv 5850  Basecbs 15776  lecple 15864  LAutclaut 34737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-map 7805  df-laut 34741
This theorem is referenced by:  lautcnv  34842  lautj  34845  lautm  34846  ltrncnvleN  34882  ltrneq2  34900
  Copyright terms: Public domain W3C validator