MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lawcos Structured version   Visualization version   GIF version

Theorem lawcos 25321
Description: Law of cosines (also known as the Al-Kashi theorem or the generalized Pythagorean theorem, or the cosine formula or cosine rule). Given three distinct points A, B, and C, prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 25319), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB, and 𝑂 is the signed angle m/_ BCA on the complex plane. We translate triangle ABC to move C to the origin (C-C), B to U=(B-C), and A to V=(A-C), then use lemma lawcoslem1 25320 to prove this algebraically simpler case. The Metamath convention is to use a signed angle; in this case the sign doesn't matter because we use the cosine of the angle (see cosneg 15488). The Pythagorean theorem pythag 25322 is a special case of the law of cosines. The theorem's expression and approach were suggested by Mario Carneiro. This is Metamath 100 proof #94. (Contributed by David A. Wheeler, 12-Jun-2015.)
Hypotheses
Ref Expression
lawcos.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
lawcos.2 𝑋 = (abs‘(𝐵𝐶))
lawcos.3 𝑌 = (abs‘(𝐴𝐶))
lawcos.4 𝑍 = (abs‘(𝐴𝐵))
lawcos.5 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
Assertion
Ref Expression
lawcos (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem lawcos
StepHypRef Expression
1 subcl 10873 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
213adant2 1123 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶) ∈ ℂ)
32adantr 481 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ∈ ℂ)
4 subcl 10873 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
543adant1 1122 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
65adantr 481 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ∈ ℂ)
7 subeq0 10900 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) = 0 ↔ 𝐴 = 𝐶))
87necon3bid 3057 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) ≠ 0 ↔ 𝐴𝐶))
98bicomd 224 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1093adant2 1123 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐶 ↔ (𝐴𝐶) ≠ 0))
1110biimpa 477 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐴𝐶) → (𝐴𝐶) ≠ 0)
1211adantrr 713 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐴𝐶) ≠ 0)
13 subeq0 10900 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) = 0 ↔ 𝐵 = 𝐶))
1413necon3bid 3057 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) ≠ 0 ↔ 𝐵𝐶))
1514bicomd 224 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
16153adant1 1122 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶 ↔ (𝐵𝐶) ≠ 0))
1716biimpa 477 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝐵𝐶) → (𝐵𝐶) ≠ 0)
1817adantrl 712 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝐵𝐶) ≠ 0)
193, 6, 12, 18lawcoslem1 25320 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
20 nnncan2 10911 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶) − (𝐵𝐶)) = (𝐴𝐵))
2120fveq2d 6667 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘((𝐴𝐶) − (𝐵𝐶))) = (abs‘(𝐴𝐵)))
22 lawcos.4 . . . . 5 𝑍 = (abs‘(𝐴𝐵))
2321, 22syl6reqr 2872 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝑍 = (abs‘((𝐴𝐶) − (𝐵𝐶))))
2423oveq1d 7160 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
2524adantr 481 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = ((abs‘((𝐴𝐶) − (𝐵𝐶)))↑2))
263abscld 14784 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℝ)
2726recnd 10657 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐴𝐶)) ∈ ℂ)
2827sqcld 13496 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶))↑2) ∈ ℂ)
296abscld 14784 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℝ)
3029recnd 10657 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘(𝐵𝐶)) ∈ ℂ)
3130sqcld 13496 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐵𝐶))↑2) ∈ ℂ)
3228, 31addcomd 10830 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2)))
33 lawcos.2 . . . . . 6 𝑋 = (abs‘(𝐵𝐶))
3433oveq1i 7155 . . . . 5 (𝑋↑2) = ((abs‘(𝐵𝐶))↑2)
35 lawcos.3 . . . . . 6 𝑌 = (abs‘(𝐴𝐶))
3635oveq1i 7155 . . . . 5 (𝑌↑2) = ((abs‘(𝐴𝐶))↑2)
3734, 36oveq12i 7157 . . . 4 ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐵𝐶))↑2) + ((abs‘(𝐴𝐶))↑2))
3832, 37syl6reqr 2872 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋↑2) + (𝑌↑2)) = (((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)))
3927, 30mulcomd 10650 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶))))
4033, 35oveq12i 7157 . . . . . 6 (𝑋 · 𝑌) = ((abs‘(𝐵𝐶)) · (abs‘(𝐴𝐶)))
4139, 40syl6reqr 2872 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑋 · 𝑌) = ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))
42 lawcos.5 . . . . . . . . 9 𝑂 = ((𝐵𝐶)𝐹(𝐴𝐶))
4342fveq2i 6666 . . . . . . . 8 (cos‘𝑂) = (cos‘((𝐵𝐶)𝐹(𝐴𝐶)))
44 lawcos.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
4544, 6, 18, 3, 12angvald 25309 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐵𝐶)𝐹(𝐴𝐶)) = (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))
4645fveq2d 6667 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘((𝐵𝐶)𝐹(𝐴𝐶))) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
4743, 46syl5eq 2865 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))
483, 6, 18divcld 11404 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ)
493, 6, 12, 18divne0d 11420 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝐴𝐶) / (𝐵𝐶)) ≠ 0)
5048, 49logcld 25081 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (log‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℂ)
5150imcld 14542 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ)
52 recosval 15477 . . . . . . . 8 ((ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))) ∈ ℝ → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5351, 52syl 17 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘(ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
5447, 53eqtrd 2853 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))))
55 efiarg 25117 . . . . . . . 8 ((((𝐴𝐶) / (𝐵𝐶)) ∈ ℂ ∧ ((𝐴𝐶) / (𝐵𝐶)) ≠ 0) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5648, 49, 55syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶)))))) = (((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
5756fveq2d 6667 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(exp‘(i · (ℑ‘(log‘((𝐴𝐶) / (𝐵𝐶))))))) = (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
5848abscld 14784 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ∈ ℝ)
5948, 49absne0d 14795 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (abs‘((𝐴𝐶) / (𝐵𝐶))) ≠ 0)
6058, 48, 59redivd 14576 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (ℜ‘(((𝐴𝐶) / (𝐵𝐶)) / (abs‘((𝐴𝐶) / (𝐵𝐶))))) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6154, 57, 603eqtrd 2857 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (cos‘𝑂) = ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))
6241, 61oveq12d 7163 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → ((𝑋 · 𝑌) · (cos‘𝑂)) = (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))
6362oveq2d 7161 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (2 · ((𝑋 · 𝑌) · (cos‘𝑂))) = (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶)))))))
6438, 63oveq12d 7163 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))) = ((((abs‘(𝐴𝐶))↑2) + ((abs‘(𝐵𝐶))↑2)) − (2 · (((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) · ((ℜ‘((𝐴𝐶) / (𝐵𝐶))) / (abs‘((𝐴𝐶) / (𝐵𝐶))))))))
6519, 25, 643eqtr4d 2863 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴𝐶𝐵𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  cdif 3930  {csn 4557  cfv 6348  (class class class)co 7145  cmpo 7147  cc 10523  cr 10524  0cc0 10525  ici 10527   + caddc 10528   · cmul 10530  cmin 10858   / cdiv 11285  2c2 11680  cexp 13417  cre 14444  cim 14445  abscabs 14581  expce 15403  cosccos 15406  logclog 25065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067
This theorem is referenced by:  pythag  25322  ssscongptld  25327  heron  25343
  Copyright terms: Public domain W3C validator