![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbioo | Structured version Visualization version GIF version |
Description: An open interval does not contain its left endpoint. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
lbioo | ⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioo3g 12389 | . . . 4 ⊢ (𝐴 ∈ (𝐴(,)𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (𝐴 < 𝐴 ∧ 𝐴 < 𝐵))) | |
2 | 1 | simprbi 483 | . . 3 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 < 𝐴 ∧ 𝐴 < 𝐵)) |
3 | 2 | simpld 477 | . 2 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 < 𝐴) |
4 | 1 | simplbi 478 | . . . 4 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*)) |
5 | 4 | simp3d 1138 | . . 3 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → 𝐴 ∈ ℝ*) |
6 | xrltnr 12138 | . . 3 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐴(,)𝐵) → ¬ 𝐴 < 𝐴) |
8 | 3, 7 | pm2.65i 185 | 1 ⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2131 class class class wbr 4796 (class class class)co 6805 ℝ*cxr 10257 < clt 10258 (,)cioo 12360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-pre-lttri 10194 ax-pre-lttrn 10195 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-po 5179 df-so 5180 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-1st 7325 df-2nd 7326 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-ioo 12364 |
This theorem is referenced by: lhop1lem 23967 lhop1 23968 lhop 23970 iooinlbub 40218 lptioo1 40359 volico 40695 fourierdlem61 40879 |
Copyright terms: Public domain | W3C validator |