MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lble Structured version   Visualization version   GIF version

Theorem lble 11587
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
lble ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑆   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem lble
StepHypRef Expression
1 lbreu 11585 . . . . 5 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
2 nfcv 2977 . . . . . . 7 𝑥𝑆
3 nfriota1 7115 . . . . . . . 8 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦)
4 nfcv 2977 . . . . . . . 8 𝑥
5 nfcv 2977 . . . . . . . 8 𝑥𝑦
63, 4, 5nfbr 5105 . . . . . . 7 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
72, 6nfralw 3225 . . . . . 6 𝑥𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
8 eqid 2821 . . . . . 6 (𝑥𝑆𝑦𝑆 𝑥𝑦) = (𝑥𝑆𝑦𝑆 𝑥𝑦)
9 nfra1 3219 . . . . . . . . 9 𝑦𝑦𝑆 𝑥𝑦
10 nfcv 2977 . . . . . . . . 9 𝑦𝑆
119, 10nfriota 7120 . . . . . . . 8 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦)
1211nfeq2 2995 . . . . . . 7 𝑦 𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦)
13 breq1 5061 . . . . . . 7 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1412, 13ralbid 3231 . . . . . 6 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
157, 8, 14riotaprop 7135 . . . . 5 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
161, 15syl 17 . . . 4 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1716simprd 498 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦)
18 nfcv 2977 . . . . 5 𝑦
19 nfcv 2977 . . . . 5 𝑦𝐴
2011, 18, 19nfbr 5105 . . . 4 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴
21 breq2 5062 . . . 4 (𝑦 = 𝐴 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2220, 21rspc 3610 . . 3 (𝐴𝑆 → (∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2317, 22mpan9 509 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
24233impa 1106 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  ∃!wreu 3140  wss 3935   class class class wbr 5058  crio 7107  cr 10530  cle 10670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675
This theorem is referenced by:  lbinf  11588  lbinfle  11590
  Copyright terms: Public domain W3C validator