Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lble Structured version   Visualization version   GIF version

Theorem lble 11013
 Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
lble ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
Distinct variable groups:   𝑥,𝑦,𝑆   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem lble
StepHypRef Expression
1 lbreu 11011 . . . . 5 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
2 nfcv 2793 . . . . . . 7 𝑥𝑆
3 nfriota1 6658 . . . . . . . 8 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦)
4 nfcv 2793 . . . . . . . 8 𝑥
5 nfcv 2793 . . . . . . . 8 𝑥𝑦
63, 4, 5nfbr 4732 . . . . . . 7 𝑥(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
72, 6nfral 2974 . . . . . 6 𝑥𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦
8 eqid 2651 . . . . . 6 (𝑥𝑆𝑦𝑆 𝑥𝑦) = (𝑥𝑆𝑦𝑆 𝑥𝑦)
9 nfra1 2970 . . . . . . . . 9 𝑦𝑦𝑆 𝑥𝑦
10 nfcv 2793 . . . . . . . . 9 𝑦𝑆
119, 10nfriota 6660 . . . . . . . 8 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦)
1211nfeq2 2809 . . . . . . 7 𝑦 𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦)
13 breq1 4688 . . . . . . 7 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1412, 13ralbid 3012 . . . . . 6 (𝑥 = (𝑥𝑆𝑦𝑆 𝑥𝑦) → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
157, 8, 14riotaprop 6675 . . . . 5 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
161, 15syl 17 . . . 4 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 ∧ ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦))
1716simprd 478 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦)
18 nfcv 2793 . . . . 5 𝑦
19 nfcv 2793 . . . . 5 𝑦𝐴
2011, 18, 19nfbr 4732 . . . 4 𝑦(𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴
21 breq2 4689 . . . 4 (𝑦 = 𝐴 → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 ↔ (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2220, 21rspc 3334 . . 3 (𝐴𝑆 → (∀𝑦𝑆 (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑦 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴))
2317, 22mpan9 485 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
24233impa 1278 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  ∃!wreu 2943   ⊆ wss 3607   class class class wbr 4685  ℩crio 6650  ℝcr 9973   ≤ cle 10113 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118 This theorem is referenced by:  lbinf  11014  lbinfle  11016
 Copyright terms: Public domain W3C validator