MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextg Structured version   Visualization version   GIF version

Theorem lbsextg 19863
Description: For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
lbsex.j 𝐽 = (LBasis‘𝑊)
lbsex.v 𝑉 = (Base‘𝑊)
lbsex.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lbsextg (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
Distinct variable groups:   𝑥,𝑠,𝐶   𝐽,𝑠   𝑁,𝑠,𝑥   𝑉,𝑠   𝑊,𝑠,𝑥
Allowed substitution hints:   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem lbsextg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsex.v . 2 𝑉 = (Base‘𝑊)
2 lbsex.j . 2 𝐽 = (LBasis‘𝑊)
3 lbsex.n . 2 𝑁 = (LSpan‘𝑊)
4 simp1l 1189 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝑊 ∈ LVec)
5 simp2 1129 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝐶𝑉)
6 simp3 1130 . . 3 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
7 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
8 sneq 4567 . . . . . . . 8 (𝑥 = 𝑦 → {𝑥} = {𝑦})
98difeq2d 4096 . . . . . . 7 (𝑥 = 𝑦 → (𝐶 ∖ {𝑥}) = (𝐶 ∖ {𝑦}))
109fveq2d 6667 . . . . . 6 (𝑥 = 𝑦 → (𝑁‘(𝐶 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑦})))
117, 10eleq12d 2904 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))))
1211notbid 319 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦}))))
1312cbvralvw 3447 . . 3 (∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})) ↔ ∀𝑦𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))
146, 13sylib 219 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∀𝑦𝐶 ¬ 𝑦 ∈ (𝑁‘(𝐶 ∖ {𝑦})))
158difeq2d 4096 . . . . . . . 8 (𝑥 = 𝑦 → (𝑧 ∖ {𝑥}) = (𝑧 ∖ {𝑦}))
1615fveq2d 6667 . . . . . . 7 (𝑥 = 𝑦 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝑧 ∖ {𝑦})))
177, 16eleq12d 2904 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
1817notbid 319 . . . . 5 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
1918cbvralvw 3447 . . . 4 (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))
2019anbi2i 622 . . 3 ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝑧 ∧ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦}))))
2120rabbii 3471 . 2 {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑦𝑧 ¬ 𝑦 ∈ (𝑁‘(𝑧 ∖ {𝑦})))}
22 simp1r 1190 . 2 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → 𝒫 𝑉 ∈ dom card)
231, 2, 3, 4, 5, 14, 21, 22lbsextlem4 19862 1 (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶𝑉 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠𝐽 𝐶𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  {crab 3139  cdif 3930  wss 3933  𝒫 cpw 4535  {csn 4557  dom cdm 5548  cfv 6348  cardccrd 9352  Basecbs 16471  LSpanclspn 19672  LBasisclbs 19775  LVecclvec 19803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-rpss 7438  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-drng 19433  df-lmod 19565  df-lss 19633  df-lsp 19673  df-lbs 19776  df-lvec 19804
This theorem is referenced by:  lbsext  19864  lbsexg  19865
  Copyright terms: Public domain W3C validator