Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdlsp Structured version   Visualization version   GIF version

Theorem lcdlsp 36387
Description: Span in the set of functionals with closed kernels. (Contributed by NM, 28-Mar-2015.)
Hypotheses
Ref Expression
lcdlsp.h 𝐻 = (LHyp‘𝐾)
lcdlsp.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdlsp.d 𝐷 = (LDual‘𝑈)
lcdlsp.m 𝑀 = (LSpan‘𝐷)
lcdlsp.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdlsp.f 𝐹 = (Base‘𝐶)
lcdlsp.n 𝑁 = (LSpan‘𝐶)
lcdlsp.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdlsp.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcdlsp (𝜑 → (𝑁𝐺) = (𝑀𝐺))

Proof of Theorem lcdlsp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcdlsp.n . . . 4 𝑁 = (LSpan‘𝐶)
2 lcdlsp.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 eqid 2621 . . . . . 6 ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊)
4 lcdlsp.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 lcdlsp.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 eqid 2621 . . . . . 6 (LFnl‘𝑈) = (LFnl‘𝑈)
7 eqid 2621 . . . . . 6 (LKer‘𝑈) = (LKer‘𝑈)
8 lcdlsp.d . . . . . 6 𝐷 = (LDual‘𝑈)
9 lcdlsp.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
102, 3, 4, 5, 6, 7, 8, 9lcdval 36355 . . . . 5 (𝜑𝐶 = (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
1110fveq2d 6152 . . . 4 (𝜑 → (LSpan‘𝐶) = (LSpan‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
121, 11syl5eq 2667 . . 3 (𝜑𝑁 = (LSpan‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
1312fveq1d 6150 . 2 (𝜑 → (𝑁𝐺) = ((LSpan‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))‘𝐺))
142, 5, 9dvhlmod 35876 . . . 4 (𝜑𝑈 ∈ LMod)
158, 14lduallmod 33917 . . 3 (𝜑𝐷 ∈ LMod)
16 eqid 2621 . . . 4 (LSubSp‘𝐷) = (LSubSp‘𝐷)
17 eqid 2621 . . . 4 {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}
182, 5, 3, 6, 7, 8, 16, 17, 9lclkr 36299 . . 3 (𝜑 → {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ (LSubSp‘𝐷))
19 lcdlsp.g . . . 4 (𝜑𝐺𝐹)
20 lcdlsp.f . . . . 5 𝐹 = (Base‘𝐶)
212, 3, 4, 20, 5, 6, 7, 17, 9lcdvbase 36359 . . . 4 (𝜑𝐹 = {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})
2219, 21sseqtrd 3620 . . 3 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})
23 eqid 2621 . . . 4 (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) = (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})
24 lcdlsp.m . . . 4 𝑀 = (LSpan‘𝐷)
25 eqid 2621 . . . 4 (LSpan‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})) = (LSpan‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
2623, 24, 25, 16lsslsp 18934 . . 3 ((𝐷 ∈ LMod ∧ {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ (LSubSp‘𝐷) ∧ 𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) → (𝑀𝐺) = ((LSpan‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))‘𝐺))
2715, 18, 22, 26syl3anc 1323 . 2 (𝜑 → (𝑀𝐺) = ((LSpan‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))‘𝐺))
2813, 27eqtr4d 2658 1 (𝜑 → (𝑁𝐺) = (𝑀𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2911  wss 3555  cfv 5847  (class class class)co 6604  Basecbs 15781  s cress 15782  LModclmod 18784  LSubSpclss 18851  LSpanclspn 18890  LFnlclfn 33821  LKerclk 33849  LDualcld 33887  HLchlt 34114  LHypclh 34747  DVecHcdvh 35844  ocHcoch 36113  LCDualclcd 36352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-riotaBAD 33716
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-undef 7344  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-0g 16023  df-mre 16167  df-mrc 16168  df-acs 16170  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-cntz 17671  df-oppg 17697  df-lsm 17972  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-drng 18670  df-lmod 18786  df-lss 18852  df-lsp 18891  df-lvec 19022  df-lsatoms 33740  df-lshyp 33741  df-lcv 33783  df-lfl 33822  df-lkr 33850  df-ldual 33888  df-oposet 33940  df-ol 33942  df-oml 33943  df-covers 34030  df-ats 34031  df-atl 34062  df-cvlat 34086  df-hlat 34115  df-llines 34261  df-lplanes 34262  df-lvols 34263  df-lines 34264  df-psubsp 34266  df-pmap 34267  df-padd 34559  df-lhyp 34751  df-laut 34752  df-ldil 34867  df-ltrn 34868  df-trl 34923  df-tgrp 35508  df-tendo 35520  df-edring 35522  df-dveca 35768  df-disoa 35795  df-dvech 35845  df-dib 35905  df-dic 35939  df-dih 35995  df-doch 36114  df-djh 36161  df-lcdual 36353
This theorem is referenced by:  lcdlkreqN  36388  mapdhvmap  36535
  Copyright terms: Public domain W3C validator