Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdlss Structured version   Visualization version   GIF version

Theorem lcdlss 37225
 Description: Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdlss.h 𝐻 = (LHyp‘𝐾)
lcdlss.o 𝑂 = ((ocH‘𝐾)‘𝑊)
lcdlss.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdlss.s 𝑆 = (LSubSp‘𝐶)
lcdlss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdlss.f 𝐹 = (LFnl‘𝑈)
lcdlss.l 𝐿 = (LKer‘𝑈)
lcdlss.d 𝐷 = (LDual‘𝑈)
lcdlss.t 𝑇 = (LSubSp‘𝐷)
lcdlss.b 𝐵 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
lcdlss.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcdlss (𝜑𝑆 = (𝑇 ∩ 𝒫 𝐵))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑓,𝐾   𝑓,𝐿   𝑓,𝑂   𝑈,𝑓   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝑆(𝑓)   𝑇(𝑓)   𝐻(𝑓)

Proof of Theorem lcdlss
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lcdlss.s . . . . . 6 𝑆 = (LSubSp‘𝐶)
2 lcdlss.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 lcdlss.o . . . . . . . 8 𝑂 = ((ocH‘𝐾)‘𝑊)
4 lcdlss.c . . . . . . . 8 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 lcdlss.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 lcdlss.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
7 lcdlss.l . . . . . . . 8 𝐿 = (LKer‘𝑈)
8 lcdlss.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
9 lcdlss.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 lcdlss.b . . . . . . . 8 𝐵 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
112, 3, 4, 5, 6, 7, 8, 9, 10lcdval2 37196 . . . . . . 7 (𝜑𝐶 = (𝐷s 𝐵))
1211fveq2d 6233 . . . . . 6 (𝜑 → (LSubSp‘𝐶) = (LSubSp‘(𝐷s 𝐵)))
131, 12syl5eq 2697 . . . . 5 (𝜑𝑆 = (LSubSp‘(𝐷s 𝐵)))
1413eleq2d 2716 . . . 4 (𝜑 → (𝑢𝑆𝑢 ∈ (LSubSp‘(𝐷s 𝐵))))
152, 5, 9dvhlmod 36716 . . . . . 6 (𝜑𝑈 ∈ LMod)
168, 15lduallmod 34758 . . . . 5 (𝜑𝐷 ∈ LMod)
17 lcdlss.t . . . . . 6 𝑇 = (LSubSp‘𝐷)
182, 5, 3, 6, 7, 8, 17, 10, 9lclkr 37139 . . . . 5 (𝜑𝐵𝑇)
19 eqid 2651 . . . . . 6 (𝐷s 𝐵) = (𝐷s 𝐵)
20 eqid 2651 . . . . . 6 (LSubSp‘(𝐷s 𝐵)) = (LSubSp‘(𝐷s 𝐵))
2119, 17, 20lsslss 19009 . . . . 5 ((𝐷 ∈ LMod ∧ 𝐵𝑇) → (𝑢 ∈ (LSubSp‘(𝐷s 𝐵)) ↔ (𝑢𝑇𝑢𝐵)))
2216, 18, 21syl2anc 694 . . . 4 (𝜑 → (𝑢 ∈ (LSubSp‘(𝐷s 𝐵)) ↔ (𝑢𝑇𝑢𝐵)))
2314, 22bitrd 268 . . 3 (𝜑 → (𝑢𝑆 ↔ (𝑢𝑇𝑢𝐵)))
24 elin 3829 . . . 4 (𝑢 ∈ (𝑇 ∩ 𝒫 𝐵) ↔ (𝑢𝑇𝑢 ∈ 𝒫 𝐵))
25 selpw 4198 . . . . 5 (𝑢 ∈ 𝒫 𝐵𝑢𝐵)
2625anbi2i 730 . . . 4 ((𝑢𝑇𝑢 ∈ 𝒫 𝐵) ↔ (𝑢𝑇𝑢𝐵))
2724, 26bitr2i 265 . . 3 ((𝑢𝑇𝑢𝐵) ↔ 𝑢 ∈ (𝑇 ∩ 𝒫 𝐵))
2823, 27syl6bb 276 . 2 (𝜑 → (𝑢𝑆𝑢 ∈ (𝑇 ∩ 𝒫 𝐵)))
2928eqrdv 2649 1 (𝜑𝑆 = (𝑇 ∩ 𝒫 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {crab 2945   ∩ cin 3606   ⊆ wss 3607  𝒫 cpw 4191  ‘cfv 5926  (class class class)co 6690   ↾s cress 15905  LModclmod 18911  LSubSpclss 18980  LFnlclfn 34662  LKerclk 34690  LDualcld 34728  HLchlt 34955  LHypclh 35588  DVecHcdvh 36684  ocHcoch 36953  LCDualclcd 37192 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-riotaBAD 34557 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-undef 7444  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-0g 16149  df-mre 16293  df-mrc 16294  df-acs 16296  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-p1 17087  df-lat 17093  df-clat 17155  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-cntz 17796  df-oppg 17822  df-lsm 18097  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-lmod 18913  df-lss 18981  df-lsp 19020  df-lvec 19151  df-lsatoms 34581  df-lshyp 34582  df-lcv 34624  df-lfl 34663  df-lkr 34691  df-ldual 34729  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102  df-lplanes 35103  df-lvols 35104  df-lines 35105  df-psubsp 35107  df-pmap 35108  df-padd 35400  df-lhyp 35592  df-laut 35593  df-ldil 35708  df-ltrn 35709  df-trl 35764  df-tgrp 36348  df-tendo 36360  df-edring 36362  df-dveca 36608  df-disoa 36635  df-dvech 36685  df-dib 36745  df-dic 36779  df-dih 36835  df-doch 36954  df-djh 37001  df-lcdual 37193 This theorem is referenced by:  lcdlss2N  37226  mapdrn2  37257
 Copyright terms: Public domain W3C validator