Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdlss2N Structured version   Visualization version   GIF version

Theorem lcdlss2N 36375
Description: Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcdlss2.h 𝐻 = (LHyp‘𝐾)
lcdlss2.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdlss2.s 𝑆 = (LSubSp‘𝐶)
lcdlss2.v 𝑉 = (Base‘𝐶)
lcdlss2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdlss2.d 𝐷 = (LDual‘𝑈)
lcdlss2.t 𝑇 = (LSubSp‘𝐷)
lcdlss2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcdlss2N (𝜑𝑆 = (𝑇 ∩ 𝒫 𝑉))

Proof of Theorem lcdlss2N
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcdlss2.h . . 3 𝐻 = (LHyp‘𝐾)
2 eqid 2626 . . 3 ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊)
3 lcdlss2.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 lcdlss2.s . . 3 𝑆 = (LSubSp‘𝐶)
5 lcdlss2.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 eqid 2626 . . 3 (LFnl‘𝑈) = (LFnl‘𝑈)
7 eqid 2626 . . 3 (LKer‘𝑈) = (LKer‘𝑈)
8 lcdlss2.d . . 3 𝐷 = (LDual‘𝑈)
9 lcdlss2.t . . 3 𝑇 = (LSubSp‘𝐷)
10 eqid 2626 . . 3 {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}
11 lcdlss2.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11lcdlss 36374 . 2 (𝜑𝑆 = (𝑇 ∩ 𝒫 {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
13 lcdlss2.v . . . . 5 𝑉 = (Base‘𝐶)
141, 2, 3, 13, 5, 6, 7, 10, 11lcdvbase 36348 . . . 4 (𝜑𝑉 = {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})
1514pweqd 4140 . . 3 (𝜑 → 𝒫 𝑉 = 𝒫 {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})
1615ineq2d 3797 . 2 (𝜑 → (𝑇 ∩ 𝒫 𝑉) = (𝑇 ∩ 𝒫 {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
1712, 16eqtr4d 2663 1 (𝜑𝑆 = (𝑇 ∩ 𝒫 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  {crab 2916  cin 3559  𝒫 cpw 4135  cfv 5850  Basecbs 15776  LSubSpclss 18846  LFnlclfn 33810  LKerclk 33838  LDualcld 33876  HLchlt 34103  LHypclh 34736  DVecHcdvh 35833  ocHcoch 36102  LCDualclcd 36341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-riotaBAD 33705
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-tpos 7298  df-undef 7345  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-sca 15873  df-vsca 15874  df-0g 16018  df-mre 16162  df-mrc 16163  df-acs 16165  df-preset 16844  df-poset 16862  df-plt 16874  df-lub 16890  df-glb 16891  df-join 16892  df-meet 16893  df-p0 16955  df-p1 16956  df-lat 16962  df-clat 17024  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-grp 17341  df-minusg 17342  df-sbg 17343  df-subg 17507  df-cntz 17666  df-oppg 17692  df-lsm 17967  df-cmn 18111  df-abl 18112  df-mgp 18406  df-ur 18418  df-ring 18465  df-oppr 18539  df-dvdsr 18557  df-unit 18558  df-invr 18588  df-dvr 18599  df-drng 18665  df-lmod 18781  df-lss 18847  df-lsp 18886  df-lvec 19017  df-lsatoms 33729  df-lshyp 33730  df-lcv 33772  df-lfl 33811  df-lkr 33839  df-ldual 33877  df-oposet 33929  df-ol 33931  df-oml 33932  df-covers 34019  df-ats 34020  df-atl 34051  df-cvlat 34075  df-hlat 34104  df-llines 34250  df-lplanes 34251  df-lvols 34252  df-lines 34253  df-psubsp 34255  df-pmap 34256  df-padd 34548  df-lhyp 34740  df-laut 34741  df-ldil 34856  df-ltrn 34857  df-trl 34912  df-tgrp 35497  df-tendo 35509  df-edring 35511  df-dveca 35757  df-disoa 35784  df-dvech 35834  df-dib 35894  df-dic 35928  df-dih 35984  df-doch 36103  df-djh 36150  df-lcdual 36342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator