Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdval Structured version   Visualization version   GIF version

Theorem lcdval 38727
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdval.h 𝐻 = (LHyp‘𝐾)
lcdval.o = ((ocH‘𝐾)‘𝑊)
lcdval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdval.f 𝐹 = (LFnl‘𝑈)
lcdval.l 𝐿 = (LKer‘𝑈)
lcdval.d 𝐷 = (LDual‘𝑈)
lcdval.k (𝜑 → (𝐾𝑋𝑊𝐻))
Assertion
Ref Expression
lcdval (𝜑𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑈(𝑓)   𝐻(𝑓)   𝐿(𝑓)   (𝑓)   𝑋(𝑓)

Proof of Theorem lcdval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lcdval.k . 2 (𝜑 → (𝐾𝑋𝑊𝐻))
2 lcdval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 lcdval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43lcdfval 38726 . . . . 5 (𝐾𝑋 → (LCDual‘𝐾) = (𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)})))
54fveq1d 6674 . . . 4 (𝐾𝑋 → ((LCDual‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))‘𝑊))
62, 5syl5eq 2870 . . 3 (𝐾𝑋𝐶 = ((𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))‘𝑊))
7 fveq2 6672 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
8 lcdval.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
97, 8syl6eqr 2876 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
109fveq2d 6676 . . . . . 6 (𝑤 = 𝑊 → (LDual‘((DVecH‘𝐾)‘𝑤)) = (LDual‘𝑈))
11 lcdval.d . . . . . 6 𝐷 = (LDual‘𝑈)
1210, 11syl6eqr 2876 . . . . 5 (𝑤 = 𝑊 → (LDual‘((DVecH‘𝐾)‘𝑤)) = 𝐷)
139fveq2d 6676 . . . . . . 7 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = (LFnl‘𝑈))
14 lcdval.f . . . . . . 7 𝐹 = (LFnl‘𝑈)
1513, 14syl6eqr 2876 . . . . . 6 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = 𝐹)
16 fveq2 6672 . . . . . . . . 9 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊))
17 lcdval.o . . . . . . . . 9 = ((ocH‘𝐾)‘𝑊)
1816, 17syl6eqr 2876 . . . . . . . 8 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = )
199fveq2d 6676 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = (LKer‘𝑈))
20 lcdval.l . . . . . . . . . . 11 𝐿 = (LKer‘𝑈)
2119, 20syl6eqr 2876 . . . . . . . . . 10 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = 𝐿)
2221fveq1d 6674 . . . . . . . . 9 (𝑤 = 𝑊 → ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) = (𝐿𝑓))
2318, 22fveq12d 6679 . . . . . . . 8 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) = ( ‘(𝐿𝑓)))
2418, 23fveq12d 6679 . . . . . . 7 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ( ‘( ‘(𝐿𝑓))))
2524, 22eqeq12d 2839 . . . . . 6 (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ↔ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)))
2615, 25rabeqbidv 3487 . . . . 5 (𝑤 = 𝑊 → {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)} = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
2712, 26oveq12d 7176 . . . 4 (𝑤 = 𝑊 → ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}) = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
28 eqid 2823 . . . 4 (𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)})) = (𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))
29 ovex 7191 . . . 4 (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}) ∈ V
3027, 28, 29fvmpt 6770 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))‘𝑊) = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
316, 30sylan9eq 2878 . 2 ((𝐾𝑋𝑊𝐻) → 𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
321, 31syl 17 1 (𝜑𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3144  cmpt 5148  cfv 6357  (class class class)co 7158  s cress 16486  LFnlclfn 36195  LKerclk 36223  LDualcld 36261  LHypclh 37122  DVecHcdvh 38216  ocHcoch 38485  LCDualclcd 38724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-lcdual 38725
This theorem is referenced by:  lcdval2  38728  lcdlvec  38729  lcdvadd  38735  lcdsca  38737  lcdvs  38741  lcd0v  38749  lcdlsp  38759
  Copyright terms: Public domain W3C validator