Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7lem Structured version   Visualization version   GIF version

Theorem lcfl7lem 37288
 Description: Lemma for lcfl7N 37290. If two functionals 𝐺 and 𝐽 are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lcfl7lem.h 𝐻 = (LHyp‘𝐾)
lcfl7lem.o = ((ocH‘𝐾)‘𝑊)
lcfl7lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl7lem.v 𝑉 = (Base‘𝑈)
lcfl7lem.a + = (+g𝑈)
lcfl7lem.t · = ( ·𝑠𝑈)
lcfl7lem.s 𝑆 = (Scalar‘𝑈)
lcfl7lem.r 𝑅 = (Base‘𝑆)
lcfl7lem.z 0 = (0g𝑈)
lcfl7lem.f 𝐹 = (LFnl‘𝑈)
lcfl7lem.l 𝐿 = (LKer‘𝑈)
lcfl7lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl7lem.g 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
lcfl7lem.j 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
lcfl7lem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.x2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.gj (𝜑𝐺 = 𝐽)
Assertion
Ref Expression
lcfl7lem (𝜑𝑋 = 𝑌)
Distinct variable groups:   𝑣,𝑘,𝑤, +   ,𝑘,𝑣,𝑤   𝑤, 0   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤   𝑣,𝑉   · ,𝑘,𝑣,𝑤   𝑘,𝑋,𝑣,𝑤   𝑘,𝑌,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑣)   𝑈(𝑤,𝑣,𝑘)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐽(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl7lem
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lcfl7lem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 lcfl7lem.o . . . . . 6 = ((ocH‘𝐾)‘𝑊)
3 lcfl7lem.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfl7lem.v . . . . . 6 𝑉 = (Base‘𝑈)
5 lcfl7lem.z . . . . . 6 0 = (0g𝑈)
6 lcfl7lem.a . . . . . 6 + = (+g𝑈)
7 lcfl7lem.t . . . . . 6 · = ( ·𝑠𝑈)
8 lcfl7lem.l . . . . . 6 𝐿 = (LKer‘𝑈)
9 lcfl7lem.s . . . . . 6 𝑆 = (Scalar‘𝑈)
10 lcfl7lem.r . . . . . 6 𝑅 = (Base‘𝑆)
11 lcfl7lem.g . . . . . 6 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
12 lcfl7lem.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 lcfl7lem.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dochsnkr2cl 37263 . . . . 5 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1514eldifad 3725 . . . 4 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
16 lcfl7lem.gj . . . . . . . 8 (𝜑𝐺 = 𝐽)
1716fveq2d 6354 . . . . . . 7 (𝜑 → (𝐿𝐺) = (𝐿𝐽))
18 lcfl7lem.j . . . . . . . 8 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
19 lcfl7lem.x2 . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 12, 19dochsnkr2 37262 . . . . . . 7 (𝜑 → (𝐿𝐽) = ( ‘{𝑌}))
2117, 20eqtrd 2792 . . . . . 6 (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
2221fveq2d 6354 . . . . 5 (𝜑 → ( ‘(𝐿𝐺)) = ( ‘( ‘{𝑌})))
23 eqid 2758 . . . . . . 7 (LSpan‘𝑈) = (LSpan‘𝑈)
2419eldifad 3725 . . . . . . . 8 (𝜑𝑌𝑉)
2524snssd 4483 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
261, 3, 2, 4, 23, 12, 25dochocsp 37168 . . . . . 6 (𝜑 → ( ‘((LSpan‘𝑈)‘{𝑌})) = ( ‘{𝑌}))
2726fveq2d 6354 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ( ‘( ‘{𝑌})))
28 eqid 2758 . . . . . . . 8 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
291, 3, 4, 23, 28dihlsprn 37120 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3012, 24, 29syl2anc 696 . . . . . 6 (𝜑 → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
311, 28, 2dochoc 37156 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3212, 30, 31syl2anc 696 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3322, 27, 323eqtr2d 2798 . . . 4 (𝜑 → ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑌}))
3415, 33eleqtrd 2839 . . 3 (𝜑𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}))
351, 3, 12dvhlmod 36899 . . . 4 (𝜑𝑈 ∈ LMod)
369, 10, 4, 7, 23lspsnel 19203 . . . 4 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3735, 24, 36syl2anc 696 . . 3 (𝜑 → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3834, 37mpbid 222 . 2 (𝜑 → ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌))
39 simp3 1133 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = (𝑠 · 𝑌))
40 fveq2 6350 . . . . . . . . . 10 (𝑋 = (𝑠 · 𝑌) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
41403ad2ant3 1130 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
42 eqid 2758 . . . . . . . . . . . 12 (1r𝑆) = (1r𝑆)
431, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 19, 18dochfl1 37265 . . . . . . . . . . 11 (𝜑 → (𝐽𝑌) = (1r𝑆))
4416fveq1d 6352 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (𝐽𝑌))
451, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 13, 11dochfl1 37265 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋) = (1r𝑆))
4643, 44, 453eqtr4rd 2803 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) = (𝐺𝑌))
47463ad2ant1 1128 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺𝑌))
48353ad2ant1 1128 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑈 ∈ LMod)
49 lcfl7lem.f . . . . . . . . . . . 12 𝐹 = (LFnl‘𝑈)
501, 2, 3, 4, 5, 6, 7, 49, 9, 10, 11, 12, 13dochflcl 37264 . . . . . . . . . . 11 (𝜑𝐺𝐹)
51503ad2ant1 1128 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝐺𝐹)
52 simp2 1132 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠𝑅)
53243ad2ant1 1128 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑌𝑉)
54 eqid 2758 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
559, 10, 54, 4, 7, 49lflmul 34856 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑠𝑅𝑌𝑉)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5648, 51, 52, 53, 55syl112anc 1481 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5741, 47, 563eqtr3d 2800 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) = (𝑠(.r𝑆)(𝐺𝑌)))
5857oveq1d 6826 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
599lmodring 19071 . . . . . . . . . 10 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
6035, 59syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
61603ad2ant1 1128 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑆 ∈ Ring)
629, 10, 4, 49lflcl 34852 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ 𝑅)
6335, 50, 24, 62syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝐺𝑌) ∈ 𝑅)
64633ad2ant1 1128 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) ∈ 𝑅)
651, 3, 12dvhlvec 36898 . . . . . . . . . . 11 (𝜑𝑈 ∈ LVec)
669lvecdrng 19305 . . . . . . . . . . 11 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
6765, 66syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ DivRing)
6844, 43eqtrd 2792 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (1r𝑆))
69 eqid 2758 . . . . . . . . . . . . 13 (0g𝑆) = (0g𝑆)
7069, 42drngunz 18962 . . . . . . . . . . . 12 (𝑆 ∈ DivRing → (1r𝑆) ≠ (0g𝑆))
7167, 70syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑆) ≠ (0g𝑆))
7268, 71eqnetrd 2997 . . . . . . . . . 10 (𝜑 → (𝐺𝑌) ≠ (0g𝑆))
73 eqid 2758 . . . . . . . . . . 11 (invr𝑆) = (invr𝑆)
7410, 69, 73drnginvrcl 18964 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7567, 63, 72, 74syl3anc 1477 . . . . . . . . 9 (𝜑 → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
76753ad2ant1 1128 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7710, 54ringass 18762 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝑠𝑅 ∧ (𝐺𝑌) ∈ 𝑅 ∧ ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7861, 52, 64, 76, 77syl13anc 1479 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7910, 69, 54, 42, 73drnginvrr 18967 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8067, 63, 72, 79syl3anc 1477 . . . . . . . . 9 (𝜑 → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
81803ad2ant1 1128 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8281oveq2d 6827 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))) = (𝑠(.r𝑆)(1r𝑆)))
8358, 78, 823eqtrrd 2797 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
8410, 54, 42ringridm 18770 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑠𝑅) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8561, 52, 84syl2anc 696 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8683, 85, 813eqtr3d 2800 . . . . 5 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠 = (1r𝑆))
87 oveq1 6818 . . . . . 6 (𝑠 = (1r𝑆) → (𝑠 · 𝑌) = ((1r𝑆) · 𝑌))
884, 9, 7, 42lmodvs1 19091 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → ((1r𝑆) · 𝑌) = 𝑌)
8935, 24, 88syl2anc 696 . . . . . . 7 (𝜑 → ((1r𝑆) · 𝑌) = 𝑌)
90893ad2ant1 1128 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((1r𝑆) · 𝑌) = 𝑌)
9187, 90sylan9eqr 2814 . . . . 5 (((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) ∧ 𝑠 = (1r𝑆)) → (𝑠 · 𝑌) = 𝑌)
9286, 91mpdan 705 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠 · 𝑌) = 𝑌)
9339, 92eqtrd 2792 . . 3 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = 𝑌)
9493rexlimdv3a 3169 . 2 (𝜑 → (∃𝑠𝑅 𝑋 = (𝑠 · 𝑌) → 𝑋 = 𝑌))
9538, 94mpd 15 1 (𝜑𝑋 = 𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1630   ∈ wcel 2137   ≠ wne 2930  ∃wrex 3049   ∖ cdif 3710  {csn 4319   ↦ cmpt 4879  ran crn 5265  ‘cfv 6047  ℩crio 6771  (class class class)co 6811  Basecbs 16057  +gcplusg 16141  .rcmulr 16142  Scalarcsca 16144   ·𝑠 cvsca 16145  0gc0g 16300  1rcur 18699  Ringcrg 18745  invrcinvr 18869  DivRingcdr 18947  LModclmod 19063  LSpanclspn 19171  LVecclvec 19302  LFnlclfn 34845  LKerclk 34873  HLchlt 35138  LHypclh 35771  DVecHcdvh 36867  DIsoHcdih 37017  ocHcoch 37136 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-riotaBAD 34740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-tpos 7519  df-undef 7566  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-n0 11483  df-z 11568  df-uz 11878  df-fz 12518  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16154  df-mulr 16155  df-sca 16157  df-vsca 16158  df-0g 16302  df-preset 17127  df-poset 17145  df-plt 17157  df-lub 17173  df-glb 17174  df-join 17175  df-meet 17176  df-p0 17238  df-p1 17239  df-lat 17245  df-clat 17307  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-submnd 17535  df-grp 17624  df-minusg 17625  df-sbg 17626  df-subg 17790  df-cntz 17948  df-lsm 18249  df-cmn 18393  df-abl 18394  df-mgp 18688  df-ur 18700  df-ring 18747  df-oppr 18821  df-dvdsr 18839  df-unit 18840  df-invr 18870  df-dvr 18881  df-drng 18949  df-lmod 19065  df-lss 19133  df-lsp 19172  df-lvec 19303  df-lsatoms 34764  df-lshyp 34765  df-lfl 34846  df-lkr 34874  df-oposet 34964  df-ol 34966  df-oml 34967  df-covers 35054  df-ats 35055  df-atl 35086  df-cvlat 35110  df-hlat 35139  df-llines 35285  df-lplanes 35286  df-lvols 35287  df-lines 35288  df-psubsp 35290  df-pmap 35291  df-padd 35583  df-lhyp 35775  df-laut 35776  df-ldil 35891  df-ltrn 35892  df-trl 35947  df-tgrp 36531  df-tendo 36543  df-edring 36545  df-dveca 36791  df-disoa 36818  df-dvech 36868  df-dib 36928  df-dic 36962  df-dih 37018  df-doch 37137  df-djh 37184 This theorem is referenced by:  lcfl7N  37290  lcfrlem9  37339
 Copyright terms: Public domain W3C validator