Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem1 Structured version   Visualization version   GIF version

Theorem lcfrlem1 38558
Description: Lemma for lcfr 38601. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
Assertion
Ref Expression
lcfrlem1 (𝜑 → (𝐻𝑋) = 0 )

Proof of Theorem lcfrlem1
StepHypRef Expression
1 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
21fveq1i 6664 . 2 (𝐻𝑋) = ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋)
3 lcfrlem1.v . . . 4 𝑉 = (Base‘𝑈)
4 lcfrlem1.s . . . 4 𝑆 = (Scalar‘𝑈)
5 eqid 2818 . . . 4 (-g𝑆) = (-g𝑆)
6 lcfrlem1.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . . 4 𝐷 = (LDual‘𝑈)
8 lcfrlem1.m . . . 4 = (-g𝐷)
9 lcfrlem1.u . . . . 5 (𝜑𝑈 ∈ LVec)
10 lveclmod 19807 . . . . 5 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝑈 ∈ LMod)
12 lcfrlem1.e . . . 4 (𝜑𝐸𝐹)
13 eqid 2818 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
14 lcfrlem1.t . . . . 5 · = ( ·𝑠𝐷)
154lvecdrng 19806 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
169, 15syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
17 lcfrlem1.g . . . . . . . 8 (𝜑𝐺𝐹)
18 lcfrlem1.x . . . . . . . 8 (𝜑𝑋𝑉)
194, 13, 3, 6lflcl 36080 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
209, 17, 18, 19syl3anc 1363 . . . . . . 7 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
21 lcfrlem1.n . . . . . . 7 (𝜑 → (𝐺𝑋) ≠ 0 )
22 lcfrlem1.z . . . . . . . 8 0 = (0g𝑆)
23 lcfrlem1.i . . . . . . . 8 𝐼 = (invr𝑆)
2413, 22, 23drnginvrcl 19448 . . . . . . 7 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2516, 20, 21, 24syl3anc 1363 . . . . . 6 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
264, 13, 3, 6lflcl 36080 . . . . . . 7 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
279, 12, 18, 26syl3anc 1363 . . . . . 6 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
28 lcfrlem1.q . . . . . . 7 × = (.r𝑆)
294, 13, 28lmodmcl 19575 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3011, 25, 27, 29syl3anc 1363 . . . . 5 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
316, 4, 13, 7, 14, 11, 30, 17ldualvscl 36155 . . . 4 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
323, 4, 5, 6, 7, 8, 11, 12, 31, 18ldualvsubval 36173 . . 3 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)))
336, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18ldualvsval 36154 . . . . 5 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
34 eqid 2818 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3513, 22, 28, 34, 23drnginvrr 19451 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3616, 20, 21, 35syl3anc 1363 . . . . . . 7 (𝜑 → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3736oveq1d 7160 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((1r𝑆) × (𝐸𝑋)))
384lmodring 19571 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
3911, 38syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
4013, 28ringass 19243 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆))) → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4139, 20, 25, 27, 40syl13anc 1364 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4213, 28, 34ringlidm 19250 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4339, 27, 42syl2anc 584 . . . . . 6 (𝜑 → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4437, 41, 433eqtr3d 2861 . . . . 5 (𝜑 → ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))) = (𝐸𝑋))
4533, 44eqtrd 2853 . . . 4 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = (𝐸𝑋))
4645oveq2d 7161 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)) = ((𝐸𝑋)(-g𝑆)(𝐸𝑋)))
474lmodfgrp 19572 . . . . 5 (𝑈 ∈ LMod → 𝑆 ∈ Grp)
4811, 47syl 17 . . . 4 (𝜑𝑆 ∈ Grp)
4913, 22, 5grpsubid 18121 . . . 4 ((𝑆 ∈ Grp ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5048, 27, 49syl2anc 584 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5132, 46, 503eqtrd 2857 . 2 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = 0 )
522, 51syl5eq 2865 1 (𝜑 → (𝐻𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  Basecbs 16471  .rcmulr 16554  Scalarcsca 16556   ·𝑠 cvsca 16557  0gc0g 16701  Grpcgrp 18041  -gcsg 18043  1rcur 19180  Ringcrg 19226  invrcinvr 19350  DivRingcdr 19431  LModclmod 19563  LVecclvec 19803  LFnlclfn 36073  LDualcld 36139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-drng 19433  df-lmod 19565  df-lvec 19804  df-lfl 36074  df-ldual 36140
This theorem is referenced by:  lcfrlem3  38560
  Copyright terms: Public domain W3C validator