Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem2 Structured version   Visualization version   GIF version

Theorem lcfrlem2 35633
Description: Lemma for lcfr 35675. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))

Proof of Theorem lcfrlem2
StepHypRef Expression
1 lcfrlem1.s . . . . . 6 𝑆 = (Scalar‘𝑈)
2 eqid 2609 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 lcfrlem1.f . . . . . 6 𝐹 = (LFnl‘𝑈)
4 lcfrlem2.l . . . . . 6 𝐿 = (LKer‘𝑈)
5 lcfrlem1.d . . . . . 6 𝐷 = (LDual‘𝑈)
6 lcfrlem1.t . . . . . 6 · = ( ·𝑠𝐷)
7 lcfrlem1.u . . . . . 6 (𝜑𝑈 ∈ LVec)
8 lcfrlem1.g . . . . . 6 (𝜑𝐺𝐹)
9 lveclmod 18875 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
107, 9syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
111lmodring 18642 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
1210, 11syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
131lvecdrng 18874 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
147, 13syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
15 lcfrlem1.x . . . . . . . . 9 (𝜑𝑋𝑉)
16 lcfrlem1.v . . . . . . . . . 10 𝑉 = (Base‘𝑈)
171, 2, 16, 3lflcl 33152 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
187, 8, 15, 17syl3anc 1317 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
19 lcfrlem1.n . . . . . . . 8 (𝜑 → (𝐺𝑋) ≠ 0 )
20 lcfrlem1.z . . . . . . . . 9 0 = (0g𝑆)
21 lcfrlem1.i . . . . . . . . 9 𝐼 = (invr𝑆)
222, 20, 21drnginvrcl 18535 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2314, 18, 19, 22syl3anc 1317 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
24 lcfrlem1.e . . . . . . . 8 (𝜑𝐸𝐹)
251, 2, 16, 3lflcl 33152 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
267, 24, 15, 25syl3anc 1317 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
27 lcfrlem1.q . . . . . . . 8 × = (.r𝑆)
282, 27ringcl 18332 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
2912, 23, 26, 28syl3anc 1317 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
301, 2, 3, 4, 5, 6, 7, 8, 29lkrss 33256 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
313, 1, 2, 5, 6, 10, 29, 8ldualvscl 33227 . . . . . 6 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
32 ringgrp 18323 . . . . . . . 8 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3312, 32syl 17 . . . . . . 7 (𝜑𝑆 ∈ Grp)
34 eqid 2609 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
352, 34ringidcl 18339 . . . . . . . 8 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
3612, 35syl 17 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
37 eqid 2609 . . . . . . . 8 (invg𝑆) = (invg𝑆)
382, 37grpinvcl 17238 . . . . . . 7 ((𝑆 ∈ Grp ∧ (1r𝑆) ∈ (Base‘𝑆)) → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
3933, 36, 38syl2anc 690 . . . . . 6 (𝜑 → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
401, 2, 3, 4, 5, 6, 7, 31, 39lkrss 33256 . . . . 5 (𝜑 → (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
4130, 40sstrd 3577 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
42 sslin 3800 . . . 4 ((𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4341, 42syl 17 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
44 eqid 2609 . . . 4 (+g𝐷) = (+g𝐷)
453, 1, 2, 5, 6, 10, 39, 31ldualvscl 33227 . . . 4 (𝜑 → (((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
463, 4, 5, 44, 10, 24, 45lkrin 33252 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4743, 46sstrd 3577 . 2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
48 lcfrlem1.h . . . 4 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
4948fveq2i 6090 . . 3 (𝐿𝐻) = (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
50 lcfrlem1.m . . . . 5 = (-g𝐷)
511, 37, 34, 3, 5, 44, 6, 50, 10, 24, 31ldualvsub 33243 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) = (𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
5251fveq2d 6091 . . 3 (𝜑 → (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) = (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
5349, 52syl5req 2656 . 2 (𝜑 → (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) = (𝐿𝐻))
5447, 53sseqtrd 3603 1 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  wne 2779  cin 3538  wss 3539  cfv 5789  (class class class)co 6526  Basecbs 15643  +gcplusg 15716  .rcmulr 15717  Scalarcsca 15719   ·𝑠 cvsca 15720  0gc0g 15871  Grpcgrp 17193  invgcminusg 17194  -gcsg 17195  1rcur 18272  Ringcrg 18318  invrcinvr 18442  DivRingcdr 18518  LModclmod 18634  LVecclvec 18871  LFnlclfn 33145  LKerclk 33173  LDualcld 33211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-n0 11142  df-z 11213  df-uz 11522  df-fz 12155  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-sca 15732  df-vsca 15733  df-0g 15873  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-grp 17196  df-minusg 17197  df-sbg 17198  df-cmn 17966  df-abl 17967  df-mgp 18261  df-ur 18273  df-ring 18320  df-oppr 18394  df-dvdsr 18412  df-unit 18413  df-invr 18443  df-drng 18520  df-lmod 18636  df-lss 18702  df-lvec 18872  df-lfl 33146  df-lkr 33174  df-ldual 33212
This theorem is referenced by:  lcfrlem35  35667
  Copyright terms: Public domain W3C validator