![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem21 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 37394. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lcfrlem21 | ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem17.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcfrlem17.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcfrlem17.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem17.p | . . 3 ⊢ + = (+g‘𝑈) | |
6 | lcfrlem17.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
7 | lcfrlem17.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | lcfrlem17.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
9 | lcfrlem17.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | 9 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | lcfrlem17.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
12 | 11 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
13 | lcfrlem17.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
14 | 13 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
15 | lcfrlem17.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
16 | 15 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
17 | simpr 479 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 17 | lcfrlem20 37371 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
19 | 1, 3, 9 | dvhlmod 36919 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
20 | 11 | eldifad 3727 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
21 | 13 | eldifad 3727 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
22 | 4, 5 | lmodcom 19131 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
23 | 19, 20, 21, 22 | syl3anc 1477 | . . . . . . . 8 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
24 | 23 | sneqd 4333 | . . . . . . 7 ⊢ (𝜑 → {(𝑋 + 𝑌)} = {(𝑌 + 𝑋)}) |
25 | 24 | fveq2d 6357 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = ( ⊥ ‘{(𝑌 + 𝑋)})) |
26 | 25 | eleq2d 2825 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ↔ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)}))) |
27 | 26 | biimprd 238 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)}) → 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
28 | 27 | con3dimp 456 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) |
29 | prcom 4411 | . . . . . . . 8 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
30 | 29 | fveq2i 6356 | . . . . . . 7 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 𝑋}) |
31 | 30 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = (𝑁‘{𝑌, 𝑋})) |
32 | 31, 25 | ineq12d 3958 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑌, 𝑋}) ∩ ( ⊥ ‘{(𝑌 + 𝑋)}))) |
33 | 32 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑌, 𝑋}) ∩ ( ⊥ ‘{(𝑌 + 𝑋)}))) |
34 | 9 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
35 | 13 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
36 | 11 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
37 | 15 | necomd 2987 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋})) |
38 | 37 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑋})) |
39 | simpr 479 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) | |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 34, 35, 36, 38, 39 | lcfrlem20 37371 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → ((𝑁‘{𝑌, 𝑋}) ∩ ( ⊥ ‘{(𝑌 + 𝑋)})) ∈ 𝐴) |
41 | 33, 40 | eqeltrd 2839 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑌 + 𝑋)})) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
42 | 28, 41 | syldan 488 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)})) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
43 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15 | lcfrlem19 37370 | . 2 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{(𝑋 + 𝑌)}))) |
44 | 18, 42, 43 | mpjaodan 862 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∖ cdif 3712 ∩ cin 3714 {csn 4321 {cpr 4323 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 0gc0g 16322 LModclmod 19085 LSpanclspn 19193 LSAtomsclsa 34782 HLchlt 35158 LHypclh 35791 DVecHcdvh 36887 ocHcoch 37156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-riotaBAD 34760 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-tpos 7522 df-undef 7569 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-0g 16324 df-mre 16468 df-mrc 16469 df-acs 16471 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-p1 17261 df-lat 17267 df-clat 17329 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-cntz 17970 df-oppg 17996 df-lsm 18271 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-oppr 18843 df-dvdsr 18861 df-unit 18862 df-invr 18892 df-dvr 18903 df-drng 18971 df-lmod 19087 df-lss 19155 df-lsp 19194 df-lvec 19325 df-lsatoms 34784 df-lshyp 34785 df-lcv 34827 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-llines 35305 df-lplanes 35306 df-lvols 35307 df-lines 35308 df-psubsp 35310 df-pmap 35311 df-padd 35603 df-lhyp 35795 df-laut 35796 df-ldil 35911 df-ltrn 35912 df-trl 35967 df-tgrp 36551 df-tendo 36563 df-edring 36565 df-dveca 36811 df-disoa 36838 df-dvech 36888 df-dib 36948 df-dic 36982 df-dih 37038 df-doch 37157 df-djh 37204 |
This theorem is referenced by: lcfrlem22 37373 lcfrlem40 37391 |
Copyright terms: Public domain | W3C validator |