Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem3 Structured version   Visualization version   GIF version

Theorem lcfrlem3 35650
Description: Lemma for lcfr 35691. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem3 (𝜑𝑋 ∈ (𝐿𝐻))

Proof of Theorem lcfrlem3
StepHypRef Expression
1 lcfrlem1.v . . 3 𝑉 = (Base‘𝑈)
2 lcfrlem1.s . . 3 𝑆 = (Scalar‘𝑈)
3 lcfrlem1.q . . 3 × = (.r𝑆)
4 lcfrlem1.z . . 3 0 = (0g𝑆)
5 lcfrlem1.i . . 3 𝐼 = (invr𝑆)
6 lcfrlem1.f . . 3 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . 3 𝐷 = (LDual‘𝑈)
8 lcfrlem1.t . . 3 · = ( ·𝑠𝐷)
9 lcfrlem1.m . . 3 = (-g𝐷)
10 lcfrlem1.u . . 3 (𝜑𝑈 ∈ LVec)
11 lcfrlem1.e . . 3 (𝜑𝐸𝐹)
12 lcfrlem1.g . . 3 (𝜑𝐺𝐹)
13 lcfrlem1.x . . 3 (𝜑𝑋𝑉)
14 lcfrlem1.n . . 3 (𝜑 → (𝐺𝑋) ≠ 0 )
15 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15lcfrlem1 35648 . 2 (𝜑 → (𝐻𝑋) = 0 )
17 lcfrlem2.l . . 3 𝐿 = (LKer‘𝑈)
18 lveclmod 18869 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
1910, 18syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
20 eqid 2605 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
212lmodring 18636 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
2219, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
232lvecdrng 18868 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
2410, 23syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
252, 20, 1, 6lflcl 33168 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
2610, 12, 13, 25syl3anc 1317 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
2720, 4, 5drnginvrcl 18529 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2824, 26, 14, 27syl3anc 1317 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
292, 20, 1, 6lflcl 33168 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
3010, 11, 13, 29syl3anc 1317 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
3120, 3ringcl 18326 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3222, 28, 30, 31syl3anc 1317 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
336, 2, 20, 7, 8, 19, 32, 12ldualvscl 33243 . . . . 5 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
346, 7, 9, 19, 11, 33ldualvsubcl 33260 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
3515, 34syl5eqel 2687 . . 3 (𝜑𝐻𝐹)
361, 2, 4, 6, 17, 10, 35, 13ellkr2 33195 . 2 (𝜑 → (𝑋 ∈ (𝐿𝐻) ↔ (𝐻𝑋) = 0 ))
3716, 36mpbird 245 1 (𝜑𝑋 ∈ (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1975  wne 2775  cfv 5786  (class class class)co 6523  Basecbs 15637  .rcmulr 15711  Scalarcsca 15713   ·𝑠 cvsca 15714  0gc0g 15865  -gcsg 17189  Ringcrg 18312  invrcinvr 18436  DivRingcdr 18512  LModclmod 18628  LVecclvec 18865  LFnlclfn 33161  LKerclk 33189  LDualcld 33227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-om 6931  df-1st 7032  df-2nd 7033  df-tpos 7212  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-sca 15726  df-vsca 15727  df-0g 15867  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-grp 17190  df-minusg 17191  df-sbg 17192  df-cmn 17960  df-abl 17961  df-mgp 18255  df-ur 18267  df-ring 18314  df-oppr 18388  df-dvdsr 18406  df-unit 18407  df-invr 18437  df-drng 18514  df-lmod 18630  df-lvec 18866  df-lfl 33162  df-lkr 33190  df-ldual 33228
This theorem is referenced by:  lcfrlem35  35683
  Copyright terms: Public domain W3C validator