Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem37 Structured version   Visualization version   GIF version

Theorem lcfrlem37 38717
Description: Lemma for lcfr 38723. (Contributed by NM, 8-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
lcfrlem37.g (𝜑𝐺 ∈ (LSubSp‘𝐷))
lcfrlem37.gs (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
lcfrlem37.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem37.xe (𝜑𝑋𝐸)
lcfrlem37.ye (𝜑𝑌𝐸)
Assertion
Ref Expression
lcfrlem37 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0   𝑓,𝐽   𝑓,𝐿   ,𝑓   + ,𝑓   𝑅,𝑓   · ,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑋   𝑓,𝑌,𝑘,𝑣,𝑤,𝑥,𝑔   𝐶,𝑔,𝑘   𝐷,𝑔,𝑘   𝑔,𝐺,𝑘   𝑔,𝐼,𝑘   𝑓,𝑔,𝐽,𝑘   𝑔,𝐿,𝑘   ,𝑔   + ,𝑔   𝑄,𝑔,𝑘   𝑈,𝑘   𝑔,𝑉   𝑔,𝑋   𝑔,𝑌   𝜑,𝑔,𝑘   𝑣,𝑔,𝑤,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑓)   𝐴(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑓)   𝐷(𝑥,𝑤,𝑣,𝑓)   𝑄(𝑥,𝑤,𝑣,𝑓)   𝑅(𝑤,𝑔)   𝑆(𝑥,𝑤,𝑣,𝑓,𝑔)   · (𝑔)   𝑈(𝑥,𝑤,𝑣,𝑔)   𝐸(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐺(𝑥,𝑤,𝑣,𝑓)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑓)   𝐽(𝑥,𝑤,𝑣)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝐿(𝑥,𝑤,𝑣)   (𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑔,𝑘)   0 (𝑤,𝑣,𝑓,𝑔,𝑘)

Proof of Theorem lcfrlem37
StepHypRef Expression
1 lcfrlem30.c . . . . 5 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
2 lcfrlem25.d . . . . . 6 𝐷 = (LDual‘𝑈)
3 lcfrlem30.m . . . . . 6 = (-g𝐷)
4 eqid 2823 . . . . . 6 (LSubSp‘𝐷) = (LSubSp‘𝐷)
5 lcfrlem17.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 lcfrlem17.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 lcfrlem17.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
85, 6, 7dvhlmod 38248 . . . . . 6 (𝜑𝑈 ∈ LMod)
9 lcfrlem37.g . . . . . 6 (𝜑𝐺 ∈ (LSubSp‘𝐷))
10 lcfrlem17.o . . . . . . 7 = ((ocH‘𝐾)‘𝑊)
11 lcfrlem17.v . . . . . . 7 𝑉 = (Base‘𝑈)
12 lcfrlem17.p . . . . . . 7 + = (+g𝑈)
13 lcfrlem24.t . . . . . . 7 · = ( ·𝑠𝑈)
14 lcfrlem24.s . . . . . . 7 𝑆 = (Scalar‘𝑈)
15 lcfrlem24.r . . . . . . 7 𝑅 = (Base‘𝑆)
16 lcfrlem17.z . . . . . . 7 0 = (0g𝑈)
17 eqid 2823 . . . . . . 7 (LFnl‘𝑈) = (LFnl‘𝑈)
18 lcfrlem24.l . . . . . . 7 𝐿 = (LKer‘𝑈)
19 eqid 2823 . . . . . . 7 (0g𝐷) = (0g𝐷)
20 eqid 2823 . . . . . . 7 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
21 lcfrlem24.j . . . . . . 7 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 lcfrlem37.gs . . . . . . 7 (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
23 lcfrlem37.e . . . . . . 7 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
24 lcfrlem37.xe . . . . . . . 8 (𝜑𝑋𝐸)
25 lcfrlem17.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
26 eldifsni 4724 . . . . . . . . 9 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
2725, 26syl 17 . . . . . . . 8 (𝜑𝑋0 )
28 eldifsn 4721 . . . . . . . 8 (𝑋 ∈ (𝐸 ∖ { 0 }) ↔ (𝑋𝐸𝑋0 ))
2924, 27, 28sylanbrc 585 . . . . . . 7 (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))
305, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 29lcfrlem16 38696 . . . . . 6 (𝜑 → (𝐽𝑋) ∈ 𝐺)
31 eqid 2823 . . . . . . 7 ( ·𝑠𝐷) = ( ·𝑠𝐷)
32 lcfrlem17.n . . . . . . . 8 𝑁 = (LSpan‘𝑈)
33 lcfrlem17.a . . . . . . . 8 𝐴 = (LSAtoms‘𝑈)
34 lcfrlem17.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
35 lcfrlem17.ne . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
36 lcfrlem22.b . . . . . . . 8 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
37 lcfrlem24.q . . . . . . . 8 𝑄 = (0g𝑆)
38 lcfrlem24.ib . . . . . . . 8 (𝜑𝐼𝐵)
39 lcfrlem28.jn . . . . . . . 8 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
40 lcfrlem29.i . . . . . . . 8 𝐹 = (invr𝑆)
415, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40lcfrlem29 38709 . . . . . . 7 (𝜑 → ((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ∈ 𝑅)
42 lcfrlem37.ye . . . . . . . . 9 (𝜑𝑌𝐸)
43 eldifsni 4724 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
4434, 43syl 17 . . . . . . . . 9 (𝜑𝑌0 )
45 eldifsn 4721 . . . . . . . . 9 (𝑌 ∈ (𝐸 ∖ { 0 }) ↔ (𝑌𝐸𝑌0 ))
4642, 44, 45sylanbrc 585 . . . . . . . 8 (𝜑𝑌 ∈ (𝐸 ∖ { 0 }))
475, 10, 6, 11, 12, 13, 14, 15, 16, 17, 18, 2, 19, 20, 21, 7, 4, 9, 22, 23, 46lcfrlem16 38696 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ 𝐺)
4814, 15, 2, 31, 4, 8, 9, 41, 47ldualssvscl 36296 . . . . . 6 (𝜑 → (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)) ∈ 𝐺)
492, 3, 4, 8, 9, 30, 48ldualssvsubcl 36297 . . . . 5 (𝜑 → ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌))) ∈ 𝐺)
501, 49eqeltrid 2919 . . . 4 (𝜑𝐶𝐺)
515, 10, 6, 11, 12, 16, 32, 33, 7, 25, 34, 35, 36, 13, 14, 37, 15, 21, 38, 18, 2, 39, 40, 3, 1lcfrlem36 38716 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
52 2fveq3 6677 . . . . . 6 (𝑔 = 𝐶 → ( ‘(𝐿𝑔)) = ( ‘(𝐿𝐶)))
5352eleq2d 2900 . . . . 5 (𝑔 = 𝐶 → ((𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)) ↔ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))))
5453rspcev 3625 . . . 4 ((𝐶𝐺 ∧ (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶))) → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5550, 51, 54syl2anc 586 . . 3 (𝜑 → ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
56 eliun 4925 . . 3 ((𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)) ↔ ∃𝑔𝐺 (𝑋 + 𝑌) ∈ ( ‘(𝐿𝑔)))
5755, 56sylibr 236 . 2 (𝜑 → (𝑋 + 𝑌) ∈ 𝑔𝐺 ( ‘(𝐿𝑔)))
5857, 23eleqtrrdi 2926 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wrex 3141  {crab 3144  cdif 3935  cin 3937  wss 3938  {csn 4569  {cpr 4571   ciun 4921  cmpt 5148  cfv 6357  crio 7115  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  -gcsg 18107  invrcinvr 19423  LSubSpclss 19705  LSpanclspn 19745  LSAtomsclsa 36112  LFnlclfn 36195  LKerclk 36223  LDualcld 36261  HLchlt 36488  LHypclh 37122  DVecHcdvh 38216  ocHcoch 38485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-oppg 18476  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-lshyp 36115  df-lcv 36157  df-lfl 36196  df-lkr 36224  df-ldual 36262  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tgrp 37881  df-tendo 37893  df-edring 37895  df-dveca 38141  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367  df-doch 38486  df-djh 38533
This theorem is referenced by:  lcfrlem38  38718
  Copyright terms: Public domain W3C validator