Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem42 Structured version   Visualization version   GIF version

Theorem lcfrlem42 38722
Description: Lemma for lcfr 38723. Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
Assertion
Ref Expression
lcfrlem42 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑓,𝑔,𝐿   ,𝑓,𝑔   + ,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   𝜑,𝑔
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓,𝑔)   𝐷(𝑓)   𝑄(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓)   𝐻(𝑓,𝑔)   𝐾(𝑓,𝑔)   𝑊(𝑓,𝑔)

Proof of Theorem lcfrlem42
StepHypRef Expression
1 lcfrlem38.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 lcfrlem38.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 lcfrlem38.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 38248 . . . . 5 (𝜑𝑈 ∈ LMod)
5 lcfrlem38.o . . . . . 6 = ((ocH‘𝐾)‘𝑊)
6 eqid 2823 . . . . . 6 (Base‘𝑈) = (Base‘𝑈)
7 lcfrlem38.l . . . . . 6 𝐿 = (LKer‘𝑈)
8 lcfrlem38.d . . . . . 6 𝐷 = (LDual‘𝑈)
9 lcfrlem38.q . . . . . 6 𝑄 = (LSubSp‘𝐷)
10 lcfrlem38.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
11 lcfrlem38.g . . . . . 6 (𝜑𝐺𝑄)
12 lcfrlem38.xe . . . . . 6 (𝜑𝑋𝐸)
131, 5, 2, 6, 7, 8, 9, 10, 3, 11, 12lcfrlem4 38683 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑈))
14 lcfrlem38.ye . . . . . 6 (𝜑𝑌𝐸)
151, 5, 2, 6, 7, 8, 9, 10, 3, 11, 14lcfrlem4 38683 . . . . 5 (𝜑𝑌 ∈ (Base‘𝑈))
16 lcfrlem38.p . . . . . 6 + = (+g𝑈)
176, 16lmodcom 19682 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑈) ∧ 𝑌 ∈ (Base‘𝑈)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
184, 13, 15, 17syl3anc 1367 . . . 4 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
1918adantr 483 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
203adantr 483 . . . 4 ((𝜑𝑋 = (0g𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2111adantr 483 . . . 4 ((𝜑𝑋 = (0g𝑈)) → 𝐺𝑄)
2214adantr 483 . . . 4 ((𝜑𝑋 = (0g𝑈)) → 𝑌𝐸)
23 eqid 2823 . . . 4 (0g𝑈) = (0g𝑈)
24 simpr 487 . . . 4 ((𝜑𝑋 = (0g𝑈)) → 𝑋 = (0g𝑈))
251, 5, 2, 16, 7, 8, 9, 20, 21, 10, 22, 23, 24lcfrlem7 38686 . . 3 ((𝜑𝑋 = (0g𝑈)) → (𝑌 + 𝑋) ∈ 𝐸)
2619, 25eqeltrd 2915 . 2 ((𝜑𝑋 = (0g𝑈)) → (𝑋 + 𝑌) ∈ 𝐸)
273adantr 483 . . 3 ((𝜑𝑌 = (0g𝑈)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2811adantr 483 . . 3 ((𝜑𝑌 = (0g𝑈)) → 𝐺𝑄)
2912adantr 483 . . 3 ((𝜑𝑌 = (0g𝑈)) → 𝑋𝐸)
30 simpr 487 . . 3 ((𝜑𝑌 = (0g𝑈)) → 𝑌 = (0g𝑈))
311, 5, 2, 16, 7, 8, 9, 27, 28, 10, 29, 23, 30lcfrlem7 38686 . 2 ((𝜑𝑌 = (0g𝑈)) → (𝑋 + 𝑌) ∈ 𝐸)
32 lcfrlem38.f . . 3 𝐹 = (LFnl‘𝑈)
33 lcfrlem38.c . . 3 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
343adantr 483 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3511adantr 483 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝐺𝑄)
36 lcfrlem38.gs . . . 4 (𝜑𝐺𝐶)
3736adantr 483 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝐺𝐶)
3812adantr 483 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋𝐸)
3914adantr 483 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌𝐸)
40 simprl 769 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑋 ≠ (0g𝑈))
41 simprr 771 . . 3 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → 𝑌 ≠ (0g𝑈))
421, 5, 2, 16, 32, 7, 8, 9, 33, 10, 34, 35, 37, 38, 39, 23, 40, 41lcfrlem41 38721 . 2 ((𝜑 ∧ (𝑋 ≠ (0g𝑈) ∧ 𝑌 ≠ (0g𝑈))) → (𝑋 + 𝑌) ∈ 𝐸)
4326, 31, 42pm2.61da2ne 3107 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  {crab 3144  wss 3938   ciun 4921  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  LModclmod 19636  LSubSpclss 19705  LFnlclfn 36195  LKerclk 36223  LDualcld 36261  HLchlt 36488  LHypclh 37122  DVecHcdvh 38216  ocHcoch 38485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-oppg 18476  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-lshyp 36115  df-lcv 36157  df-lfl 36196  df-lkr 36224  df-ldual 36262  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tgrp 37881  df-tendo 37893  df-edring 37895  df-dveca 38141  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367  df-doch 38486  df-djh 38533
This theorem is referenced by:  lcfr  38723
  Copyright terms: Public domain W3C validator