MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmass Structured version   Visualization version   GIF version

Theorem lcmass 15258
Description: Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmass ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃)))

Proof of Theorem lcmass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orass 546 . . 3 (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)))
2 anass 680 . . . . . 6 (((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥) ↔ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥)))
32a1i 11 . . . . 5 (𝑥 ∈ ℕ → (((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥) ↔ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))))
43rabbiia 3176 . . . 4 {𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)} = {𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}
54infeq1i 8335 . . 3 inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < )
61, 5ifbieq2i 4087 . 2 if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < ))
7 lcmcl 15245 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℕ0)
873adant3 1079 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℕ0)
98nn0zd 11431 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℤ)
10 simp3 1061 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℤ)
11 lcmval 15236 . . . 4 (((𝑁 lcm 𝑀) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < )))
129, 10, 11syl2anc 692 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < )))
13 lcmeq0 15244 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0)))
14133adant3 1079 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0)))
1514orbi1d 738 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0) ↔ ((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0)))
1615bicomd 213 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ ((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0)))
17 nnz 11350 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
1817adantl 482 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℤ)
19 simp1 1059 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∈ ℤ)
2019adantr 481 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
21 simpl2 1063 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑀 ∈ ℤ)
22 lcmdvdsb 15257 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝑥𝑀𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥))
2318, 20, 21, 22syl3anc 1323 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁𝑥𝑀𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥))
2423anbi1d 740 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → (((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥) ↔ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)))
2524rabbidva 3179 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)} = {𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)})
2625infeq1d 8334 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < ))
2716, 26ifbieq2d 4088 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < )) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < )))
2812, 27eqtr4d 2658 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < )))
29 lcmcl 15245 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℕ0)
30293adant1 1077 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℕ0)
3130nn0zd 11431 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℤ)
32 lcmval 15236 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑃) ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )))
3319, 31, 32syl2anc 692 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )))
34 lcmeq0 15244 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0)))
35343adant1 1077 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0)))
3635orbi2d 737 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0))))
3736bicomd 213 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)) ↔ (𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0)))
3810adantr 481 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑃 ∈ ℤ)
39 lcmdvdsb 15257 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀𝑥𝑃𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥))
4018, 21, 38, 39syl3anc 1323 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑀𝑥𝑃𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥))
4140anbi2d 739 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥)) ↔ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)))
4241rabbidva 3179 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))} = {𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)})
4342infeq1d 8334 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))
4437, 43ifbieq2d 4088 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )))
4533, 44eqtr4d 2658 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < )))
466, 28, 453eqtr4a 2681 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  {crab 2911  ifcif 4063   class class class wbr 4618  (class class class)co 6610  infcinf 8298  cr 9886  0cc0 9887   < clt 10025  cn 10971  0cn0 11243  cz 11328  cdvds 14914   lcm clcm 15232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-gcd 15148  df-lcm 15234
This theorem is referenced by:  lcmfunsnlem2lem2  15283  lcmfun  15289
  Copyright terms: Public domain W3C validator