MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmcllem Structured version   Visualization version   GIF version

Theorem lcmcllem 15939
Description: Lemma for lcmn0cl 15940 and dvdslcm 15941. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmcllem (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem lcmcllem
StepHypRef Expression
1 lcmn0val 15938 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
2 ssrab2 4055 . . . 4 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ ℕ
3 nnuz 12280 . . . 4 ℕ = (ℤ‘1)
42, 3sseqtri 4002 . . 3 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ (ℤ‘1)
5 zmulcl 12030 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
65adantr 483 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ∈ ℤ)
7 zcn 11985 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 zcn 11985 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
97, 8anim12i 614 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
10 ioran 980 . . . . . . . 8 (¬ (𝑀 = 0 ∨ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
11 df-ne 3017 . . . . . . . . 9 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
12 df-ne 3017 . . . . . . . . 9 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
1311, 12anbi12i 628 . . . . . . . 8 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
1410, 13sylbb2 240 . . . . . . 7 (¬ (𝑀 = 0 ∨ 𝑁 = 0) → (𝑀 ≠ 0 ∧ 𝑁 ≠ 0))
15 mulne0 11281 . . . . . . . 8 (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
1615an4s 658 . . . . . . 7 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
179, 14, 16syl2an 597 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ≠ 0)
18 nnabscl 14684 . . . . . 6 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
196, 17, 18syl2anc 586 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
20 dvdsmul1 15630 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
21 dvdsabsb 15628 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁))))
225, 21syldan 593 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁))))
2320, 22mpbid 234 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘(𝑀 · 𝑁)))
24 dvdsmul2 15631 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
25 dvdsabsb 15628 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
265, 25sylan2 594 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
2726anabss7 671 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
2824, 27mpbid 234 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (abs‘(𝑀 · 𝑁)))
2923, 28jca 514 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
3029adantr 483 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
31 breq2 5069 . . . . . . 7 (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑀𝑛𝑀 ∥ (abs‘(𝑀 · 𝑁))))
32 breq2 5069 . . . . . . 7 (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑁𝑛𝑁 ∥ (abs‘(𝑀 · 𝑁))))
3331, 32anbi12d 632 . . . . . 6 (𝑛 = (abs‘(𝑀 · 𝑁)) → ((𝑀𝑛𝑁𝑛) ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))))
3433rspcev 3622 . . . . 5 (((abs‘(𝑀 · 𝑁)) ∈ ℕ ∧ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) → ∃𝑛 ∈ ℕ (𝑀𝑛𝑁𝑛))
3519, 30, 34syl2anc 586 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ∃𝑛 ∈ ℕ (𝑀𝑛𝑁𝑛))
36 rabn0 4338 . . . 4 ({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ (𝑀𝑛𝑁𝑛))
3735, 36sylibr 236 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ≠ ∅)
38 infssuzcl 12331 . . 3 (({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
394, 37, 38sylancr 589 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
401, 39eqeltrd 2913 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wrex 3139  {crab 3142  wss 3935  c0 4290   class class class wbr 5065  cfv 6354  (class class class)co 7155  infcinf 8904  cc 10534  cr 10535  0cc0 10536  1c1 10537   · cmul 10541   < clt 10674  cn 11637  cz 11980  cuz 12242  abscabs 14592  cdvds 15606   lcm clcm 15931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-lcm 15933
This theorem is referenced by:  lcmn0cl  15940  dvdslcm  15941
  Copyright terms: Public domain W3C validator