Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmcllem Structured version   Visualization version   GIF version

Theorem lcmcllem 15511
 Description: Lemma for lcmn0cl 15512 and dvdslcm 15513. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmcllem (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem lcmcllem
StepHypRef Expression
1 lcmn0val 15510 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
2 ssrab2 3828 . . . 4 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ ℕ
3 nnuz 11916 . . . 4 ℕ = (ℤ‘1)
42, 3sseqtri 3778 . . 3 {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ (ℤ‘1)
5 zmulcl 11618 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
65adantr 472 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ∈ ℤ)
7 zcn 11574 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 zcn 11574 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
97, 8anim12i 591 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ))
10 ioran 512 . . . . . . . 8 (¬ (𝑀 = 0 ∨ 𝑁 = 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
11 df-ne 2933 . . . . . . . . 9 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
12 df-ne 2933 . . . . . . . . 9 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
1311, 12anbi12i 735 . . . . . . . 8 ((𝑀 ≠ 0 ∧ 𝑁 ≠ 0) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0))
1410, 13sylbb2 228 . . . . . . 7 (¬ (𝑀 = 0 ∨ 𝑁 = 0) → (𝑀 ≠ 0 ∧ 𝑁 ≠ 0))
15 mulne0 10861 . . . . . . . 8 (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
1615an4s 904 . . . . . . 7 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) ∧ (𝑀 ≠ 0 ∧ 𝑁 ≠ 0)) → (𝑀 · 𝑁) ≠ 0)
179, 14, 16syl2an 495 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 · 𝑁) ≠ 0)
18 nnabscl 14264 . . . . . 6 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
196, 17, 18syl2anc 696 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
20 dvdsmul1 15205 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
21 dvdsabsb 15203 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁))))
225, 21syldan 488 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 · 𝑁) ↔ 𝑀 ∥ (abs‘(𝑀 · 𝑁))))
2320, 22mpbid 222 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (abs‘(𝑀 · 𝑁)))
24 dvdsmul2 15206 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
25 dvdsabsb 15203 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
265, 25sylan2 492 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
2726anabss7 897 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ (𝑀 · 𝑁) ↔ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
2824, 27mpbid 222 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (abs‘(𝑀 · 𝑁)))
2923, 28jca 555 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
3029adantr 472 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁))))
31 breq2 4808 . . . . . . 7 (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑀𝑛𝑀 ∥ (abs‘(𝑀 · 𝑁))))
32 breq2 4808 . . . . . . 7 (𝑛 = (abs‘(𝑀 · 𝑁)) → (𝑁𝑛𝑁 ∥ (abs‘(𝑀 · 𝑁))))
3331, 32anbi12d 749 . . . . . 6 (𝑛 = (abs‘(𝑀 · 𝑁)) → ((𝑀𝑛𝑁𝑛) ↔ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))))
3433rspcev 3449 . . . . 5 (((abs‘(𝑀 · 𝑁)) ∈ ℕ ∧ (𝑀 ∥ (abs‘(𝑀 · 𝑁)) ∧ 𝑁 ∥ (abs‘(𝑀 · 𝑁)))) → ∃𝑛 ∈ ℕ (𝑀𝑛𝑁𝑛))
3519, 30, 34syl2anc 696 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ∃𝑛 ∈ ℕ (𝑀𝑛𝑁𝑛))
36 rabn0 4101 . . . 4 ({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ (𝑀𝑛𝑁𝑛))
3735, 36sylibr 224 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ≠ ∅)
38 infssuzcl 11965 . . 3 (({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
394, 37, 38sylancr 698 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
401, 39eqeltrd 2839 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051  {crab 3054   ⊆ wss 3715  ∅c0 4058   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  infcinf 8512  ℂcc 10126  ℝcr 10127  0cc0 10128  1c1 10129   · cmul 10133   < clt 10266  ℕcn 11212  ℤcz 11569  ℤ≥cuz 11879  abscabs 14173   ∥ cdvds 15182   lcm clcm 15503 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-lcm 15505 This theorem is referenced by:  lcmn0cl  15512  dvdslcm  15513
 Copyright terms: Public domain W3C validator