MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem Structured version   Visualization version   GIF version

Theorem lcmfunsnlem 15278
Description: Lemma for lcmfdvds 15279 and lcmfunsn 15281. These two theorems must be proven simultaneously by induction on the cardinality of a finite set 𝑌, because they depend on each other. This can be seen by the two parts lcmfunsnlem1 15274 and lcmfunsnlem2 15277 of the induction step, each of them using both induction hypotheses. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
Distinct variable group:   𝑘,𝑛,𝑚,𝑌

Proof of Theorem lcmfunsnlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3605 . . . 4 (𝑥 = ∅ → (𝑥 ⊆ ℤ ↔ ∅ ⊆ ℤ))
2 raleq 3127 . . . . . . 7 (𝑥 = ∅ → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚 ∈ ∅ 𝑚𝑘))
3 fveq2 6148 . . . . . . . 8 (𝑥 = ∅ → (lcm𝑥) = (lcm‘∅))
43breq1d 4623 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑥) ∥ 𝑘 ↔ (lcm‘∅) ∥ 𝑘))
52, 4imbi12d 334 . . . . . 6 (𝑥 = ∅ → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘)))
65ralbidv 2980 . . . . 5 (𝑥 = ∅ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘)))
7 uneq1 3738 . . . . . . . 8 (𝑥 = ∅ → (𝑥 ∪ {𝑛}) = (∅ ∪ {𝑛}))
87fveq2d 6152 . . . . . . 7 (𝑥 = ∅ → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(∅ ∪ {𝑛})))
93oveq1d 6619 . . . . . . 7 (𝑥 = ∅ → ((lcm𝑥) lcm 𝑛) = ((lcm‘∅) lcm 𝑛))
108, 9eqeq12d 2636 . . . . . 6 (𝑥 = ∅ → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
1110ralbidv 2980 . . . . 5 (𝑥 = ∅ → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
126, 11anbi12d 746 . . . 4 (𝑥 = ∅ → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))))
131, 12imbi12d 334 . . 3 (𝑥 = ∅ → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (∅ ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))))
14 sseq1 3605 . . . 4 (𝑥 = 𝑦 → (𝑥 ⊆ ℤ ↔ 𝑦 ⊆ ℤ))
15 raleq 3127 . . . . . . 7 (𝑥 = 𝑦 → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑘))
16 fveq2 6148 . . . . . . . 8 (𝑥 = 𝑦 → (lcm𝑥) = (lcm𝑦))
1716breq1d 4623 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑥) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑘))
1815, 17imbi12d 334 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1918ralbidv 2980 . . . . 5 (𝑥 = 𝑦 → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
20 uneq1 3738 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 ∪ {𝑛}) = (𝑦 ∪ {𝑛}))
2120fveq2d 6152 . . . . . . 7 (𝑥 = 𝑦 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑛})))
2216oveq1d 6619 . . . . . . 7 (𝑥 = 𝑦 → ((lcm𝑥) lcm 𝑛) = ((lcm𝑦) lcm 𝑛))
2321, 22eqeq12d 2636 . . . . . 6 (𝑥 = 𝑦 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
2423ralbidv 2980 . . . . 5 (𝑥 = 𝑦 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
2519, 24anbi12d 746 . . . 4 (𝑥 = 𝑦 → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))
2614, 25imbi12d 334 . . 3 (𝑥 = 𝑦 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))))
27 sseq1 3605 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ⊆ ℤ ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ))
28 raleq 3127 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘))
29 fveq2 6148 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm𝑥) = (lcm‘(𝑦 ∪ {𝑧})))
3029breq1d 4623 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑥) ∥ 𝑘 ↔ (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
3128, 30imbi12d 334 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
3231ralbidv 2980 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
33 uneq1 3738 . . . . . . . 8 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
3433fveq2d 6152 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})))
3529oveq1d 6619 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm𝑥) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
3634, 35eqeq12d 2636 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
3736ralbidv 2980 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
3832, 37anbi12d 746 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
3927, 38imbi12d 334 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
40 sseq1 3605 . . . 4 (𝑥 = 𝑌 → (𝑥 ⊆ ℤ ↔ 𝑌 ⊆ ℤ))
41 raleq 3127 . . . . . . 7 (𝑥 = 𝑌 → (∀𝑚𝑥 𝑚𝑘 ↔ ∀𝑚𝑌 𝑚𝑘))
42 fveq2 6148 . . . . . . . 8 (𝑥 = 𝑌 → (lcm𝑥) = (lcm𝑌))
4342breq1d 4623 . . . . . . 7 (𝑥 = 𝑌 → ((lcm𝑥) ∥ 𝑘 ↔ (lcm𝑌) ∥ 𝑘))
4441, 43imbi12d 334 . . . . . 6 (𝑥 = 𝑌 → ((∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘)))
4544ralbidv 2980 . . . . 5 (𝑥 = 𝑌 → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ↔ ∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘)))
46 uneq1 3738 . . . . . . . 8 (𝑥 = 𝑌 → (𝑥 ∪ {𝑛}) = (𝑌 ∪ {𝑛}))
4746fveq2d 6152 . . . . . . 7 (𝑥 = 𝑌 → (lcm‘(𝑥 ∪ {𝑛})) = (lcm‘(𝑌 ∪ {𝑛})))
4842oveq1d 6619 . . . . . . 7 (𝑥 = 𝑌 → ((lcm𝑥) lcm 𝑛) = ((lcm𝑌) lcm 𝑛))
4947, 48eqeq12d 2636 . . . . . 6 (𝑥 = 𝑌 → ((lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
5049ralbidv 2980 . . . . 5 (𝑥 = 𝑌 → (∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛) ↔ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
5145, 50anbi12d 746 . . . 4 (𝑥 = 𝑌 → ((∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛)) ↔ (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛))))
5240, 51imbi12d 334 . . 3 (𝑥 = 𝑌 → ((𝑥 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑥 𝑚𝑘 → (lcm𝑥) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑥 ∪ {𝑛})) = ((lcm𝑥) lcm 𝑛))) ↔ (𝑌 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))))
53 lcmf0 15271 . . . . . . . 8 (lcm‘∅) = 1
54 1dvds 14920 . . . . . . . 8 (𝑘 ∈ ℤ → 1 ∥ 𝑘)
5553, 54syl5eqbr 4648 . . . . . . 7 (𝑘 ∈ ℤ → (lcm‘∅) ∥ 𝑘)
5655a1d 25 . . . . . 6 (𝑘 ∈ ℤ → (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
5756adantl 482 . . . . 5 ((∅ ⊆ ℤ ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
5857ralrimiva 2960 . . . 4 (∅ ⊆ ℤ → ∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘))
59 uncom 3735 . . . . . . . . . 10 (∅ ∪ {𝑛}) = ({𝑛} ∪ ∅)
60 un0 3939 . . . . . . . . . 10 ({𝑛} ∪ ∅) = {𝑛}
6159, 60eqtri 2643 . . . . . . . . 9 (∅ ∪ {𝑛}) = {𝑛}
6261a1i 11 . . . . . . . 8 (𝑛 ∈ ℤ → (∅ ∪ {𝑛}) = {𝑛})
6362fveq2d 6152 . . . . . . 7 (𝑛 ∈ ℤ → (lcm‘(∅ ∪ {𝑛})) = (lcm‘{𝑛}))
64 lcmfsn 15272 . . . . . . 7 (𝑛 ∈ ℤ → (lcm‘{𝑛}) = (abs‘𝑛))
6553a1i 11 . . . . . . . . 9 (𝑛 ∈ ℤ → (lcm‘∅) = 1)
6665oveq1d 6619 . . . . . . . 8 (𝑛 ∈ ℤ → ((lcm‘∅) lcm 𝑛) = (1 lcm 𝑛))
67 1z 11351 . . . . . . . . 9 1 ∈ ℤ
68 lcmcom 15230 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (1 lcm 𝑛) = (𝑛 lcm 1))
6967, 68mpan 705 . . . . . . . 8 (𝑛 ∈ ℤ → (1 lcm 𝑛) = (𝑛 lcm 1))
70 lcm1 15247 . . . . . . . 8 (𝑛 ∈ ℤ → (𝑛 lcm 1) = (abs‘𝑛))
7166, 69, 703eqtrrd 2660 . . . . . . 7 (𝑛 ∈ ℤ → (abs‘𝑛) = ((lcm‘∅) lcm 𝑛))
7263, 64, 713eqtrd 2659 . . . . . 6 (𝑛 ∈ ℤ → (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7372adantl 482 . . . . 5 ((∅ ⊆ ℤ ∧ 𝑛 ∈ ℤ) → (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7473ralrimiva 2960 . . . 4 (∅ ⊆ ℤ → ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛))
7558, 74jca 554 . . 3 (∅ ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ ∅ 𝑚𝑘 → (lcm‘∅) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(∅ ∪ {𝑛})) = ((lcm‘∅) lcm 𝑛)))
76 unss 3765 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) ↔ (𝑦 ∪ {𝑧}) ⊆ ℤ)
77 simpl 473 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → 𝑦 ⊆ ℤ)
7876, 77sylbir 225 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℤ → 𝑦 ⊆ ℤ)
7978adantl 482 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → 𝑦 ⊆ ℤ)
80 vex 3189 . . . . . . . . . . 11 𝑧 ∈ V
8180snss 4286 . . . . . . . . . 10 (𝑧 ∈ ℤ ↔ {𝑧} ⊆ ℤ)
82 lcmfunsnlem1 15274 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
83 lcmfunsnlem2 15277 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
8482, 83jca 554 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
85843exp1 1280 . . . . . . . . . 10 (𝑧 ∈ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
8681, 85sylbir 225 . . . . . . . . 9 ({𝑧} ⊆ ℤ → (𝑦 ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
8786impcom 446 . . . . . . . 8 ((𝑦 ⊆ ℤ ∧ {𝑧} ⊆ ℤ) → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
8876, 87sylbir 225 . . . . . . 7 ((𝑦 ∪ {𝑧}) ⊆ ℤ → (𝑦 ∈ Fin → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
8988impcom 446 . . . . . 6 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9079, 89embantd 59 . . . . 5 ((𝑦 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ ℤ) → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9190ex 450 . . . 4 (𝑦 ∈ Fin → ((𝑦 ∪ {𝑧}) ⊆ ℤ → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
9291com23 86 . . 3 (𝑦 ∈ Fin → ((𝑦 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ((𝑦 ∪ {𝑧}) ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
9313, 26, 39, 52, 75, 92findcard2 8144 . 2 (𝑌 ∈ Fin → (𝑌 ⊆ ℤ → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛))))
9493impcom 446 1 ((𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin) → (∀𝑘 ∈ ℤ (∀𝑚𝑌 𝑚𝑘 → (lcm𝑌) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑌 ∪ {𝑛})) = ((lcm𝑌) lcm 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  cun 3553  wss 3555  c0 3891  {csn 4148   class class class wbr 4613  cfv 5847  (class class class)co 6604  Fincfn 7899  1c1 9881  cz 11321  abscabs 13908  cdvds 14907   lcm clcm 15225  lcmclcmf 15226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-prod 14561  df-dvds 14908  df-gcd 15141  df-lcm 15227  df-lcmf 15228
This theorem is referenced by:  lcmfdvds  15279  lcmfunsn  15281
  Copyright terms: Public domain W3C validator