MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem1 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem1 15274
Description: Lemma for lcmfdvds 15279 and lcmfunsnlem 15278 (Induction step part 1). (Contributed by AV, 25-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧   𝑘,𝑚

Proof of Theorem lcmfunsnlem1
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1840 . . 3 𝑘(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
2 nfra1 2936 . . . 4 𝑘𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
3 nfv 1840 . . . 4 𝑘𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
42, 3nfan 1825 . . 3 𝑘(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
51, 4nfan 1825 . 2 𝑘((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
6 breq2 4617 . . . . . . . 8 (𝑘 = 𝑙 → (𝑚𝑘𝑚𝑙))
76ralbidv 2980 . . . . . . 7 (𝑘 = 𝑙 → (∀𝑚𝑦 𝑚𝑘 ↔ ∀𝑚𝑦 𝑚𝑙))
8 breq2 4617 . . . . . . 7 (𝑘 = 𝑙 → ((lcm𝑦) ∥ 𝑘 ↔ (lcm𝑦) ∥ 𝑙))
97, 8imbi12d 334 . . . . . 6 (𝑘 = 𝑙 → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙)))
109cbvralv 3159 . . . . 5 (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ↔ ∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙))
11 breq2 4617 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑚𝑙𝑚𝑘))
1211ralbidv 2980 . . . . . . . . 9 (𝑙 = 𝑘 → (∀𝑚𝑦 𝑚𝑙 ↔ ∀𝑚𝑦 𝑚𝑘))
13 breq2 4617 . . . . . . . . 9 (𝑙 = 𝑘 → ((lcm𝑦) ∥ 𝑙 ↔ (lcm𝑦) ∥ 𝑘))
1412, 13imbi12d 334 . . . . . . . 8 (𝑙 = 𝑘 → ((∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) ↔ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1514rspcv 3291 . . . . . . 7 (𝑘 ∈ ℤ → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
1615adantl 482 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
17 sneq 4158 . . . . . . . . . . . . 13 (𝑛 = 𝑧 → {𝑛} = {𝑧})
1817uneq2d 3745 . . . . . . . . . . . 12 (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧}))
1918fveq2d 6152 . . . . . . . . . . 11 (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧})))
20 oveq2 6612 . . . . . . . . . . 11 (𝑛 = 𝑧 → ((lcm𝑦) lcm 𝑛) = ((lcm𝑦) lcm 𝑧))
2119, 20eqeq12d 2636 . . . . . . . . . 10 (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
2221rspcv 3291 . . . . . . . . 9 (𝑧 ∈ ℤ → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
23223ad2ant1 1080 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
2423adantr 481 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
25 simpr 477 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
26 lcmfcl 15265 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
2726nn0zd 11424 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
28273adant1 1077 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
2928adantr 481 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (lcm𝑦) ∈ ℤ)
30 simpl1 1062 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → 𝑧 ∈ ℤ)
3125, 29, 303jca 1240 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3231adantr 481 . . . . . . . . . . . . 13 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
3332adantr 481 . . . . . . . . . . . 12 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → (𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
34 ssun1 3754 . . . . . . . . . . . . . . . 16 𝑦 ⊆ (𝑦 ∪ {𝑧})
35 ssralv 3645 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → ∀𝑚𝑦 𝑚𝑘))
3634, 35mp1i 13 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → ∀𝑚𝑦 𝑚𝑘))
3736imim1d 82 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm𝑦) ∥ 𝑘)))
3837imp31 448 . . . . . . . . . . . . 13 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → (lcm𝑦) ∥ 𝑘)
39 snidg 4177 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℤ → 𝑧 ∈ {𝑧})
4039olcd 408 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℤ → (𝑧𝑦𝑧 ∈ {𝑧}))
41 elun 3731 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑧𝑦𝑧 ∈ {𝑧}))
4240, 41sylibr 224 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℤ → 𝑧 ∈ (𝑦 ∪ {𝑧}))
43 breq1 4616 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑧 → (𝑚𝑘𝑧𝑘))
4443rspcv 3291 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝑦 ∪ {𝑧}) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4542, 44syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℤ → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
46453ad2ant1 1080 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4746adantr 481 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4847adantr 481 . . . . . . . . . . . . . 14 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘𝑧𝑘))
4948imp 445 . . . . . . . . . . . . 13 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → 𝑧𝑘)
5038, 49jca 554 . . . . . . . . . . . 12 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → ((lcm𝑦) ∥ 𝑘𝑧𝑘))
51 lcmdvds 15245 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((lcm𝑦) ∥ 𝑘𝑧𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
5233, 50, 51sylc 65 . . . . . . . . . . 11 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → ((lcm𝑦) lcm 𝑧) ∥ 𝑘)
53 breq1 4616 . . . . . . . . . . 11 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘 ↔ ((lcm𝑦) lcm 𝑧) ∥ 𝑘))
5452, 53syl5ibrcom 237 . . . . . . . . . 10 (((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) ∧ ∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
5554ex 450 . . . . . . . . 9 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
5655com23 86 . . . . . . . 8 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) ∧ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
5756ex 450 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
5824, 57syl5d 73 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
5916, 58syld 47 . . . . 5 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑙 ∈ ℤ (∀𝑚𝑦 𝑚𝑙 → (lcm𝑦) ∥ 𝑙) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
6010, 59syl5bi 232 . . . 4 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))))
6160impd 447 . . 3 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑘 ∈ ℤ) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
6261impancom 456 . 2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑘 ∈ ℤ → (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘)))
635, 62ralrimi 2951 1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑘 ∈ ℤ (∀𝑚 ∈ (𝑦 ∪ {𝑧})𝑚𝑘 → (lcm‘(𝑦 ∪ {𝑧})) ∥ 𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  cun 3553  wss 3555  {csn 4148   class class class wbr 4613  cfv 5847  (class class class)co 6604  Fincfn 7899  cz 11321  cdvds 14907   lcm clcm 15225  lcmclcmf 15226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-prod 14561  df-dvds 14908  df-gcd 15141  df-lcm 15227  df-lcmf 15228
This theorem is referenced by:  lcmfunsnlem  15278
  Copyright terms: Public domain W3C validator