MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2 15978
Description: Lemma for lcmfunsn 15982 and lcmfunsnlem 15979 (Induction step part 2). (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚

Proof of Theorem lcmfunsnlem2
StepHypRef Expression
1 nfv 1911 . . 3 𝑛(𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)
2 nfv 1911 . . . 4 𝑛𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘)
3 nfra1 3219 . . . 4 𝑛𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)
42, 3nfan 1896 . . 3 𝑛(∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))
51, 4nfan 1896 . 2 𝑛((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))
6 0z 11986 . . . . 5 0 ∈ ℤ
7 eqoreldif 4616 . . . . 5 (0 ∈ ℤ → (𝑛 ∈ ℤ ↔ (𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0}))))
86, 7ax-mp 5 . . . 4 (𝑛 ∈ ℤ ↔ (𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0})))
9 simp2 1133 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
10 snssi 4735 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
11103ad2ant1 1129 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
129, 11unssd 4162 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
13 snssi 4735 . . . . . . . . . . . . 13 (0 ∈ ℤ → {0} ⊆ ℤ)
146, 13mp1i 13 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {0} ⊆ ℤ)
1512, 14unssd 4162 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {0}) ⊆ ℤ)
16 c0ex 10629 . . . . . . . . . . . . . 14 0 ∈ V
1716snid 4595 . . . . . . . . . . . . 13 0 ∈ {0}
1817olci 862 . . . . . . . . . . . 12 (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {0})
19 elun 4125 . . . . . . . . . . . 12 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {0}))
2018, 19mpbir 233 . . . . . . . . . . 11 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0})
21 lcmf0val 15960 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ∪ {0}) ⊆ ℤ ∧ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {0})) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
2215, 20, 21sylancl 588 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
2322adantr 483 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})) = 0)
24 sneq 4571 . . . . . . . . . . . 12 (𝑛 = 0 → {𝑛} = {0})
2524adantl 484 . . . . . . . . . . 11 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → {𝑛} = {0})
2625uneq2d 4139 . . . . . . . . . 10 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) = ((𝑦 ∪ {𝑧}) ∪ {0}))
2726fveq2d 6669 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {0})))
28 oveq2 7158 . . . . . . . . . 10 (𝑛 = 0 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 0))
29 snfi 8588 . . . . . . . . . . . . . . 15 {𝑧} ∈ Fin
30 unfi 8779 . . . . . . . . . . . . . . 15 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
3129, 30mpan2 689 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
32313ad2ant3 1131 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
33 lcmfcl 15966 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
3412, 32, 33syl2anc 586 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
3534nn0zd 12079 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
36 lcm0val 15932 . . . . . . . . . . 11 ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ → ((lcm‘(𝑦 ∪ {𝑧})) lcm 0) = 0)
3735, 36syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 0) = 0)
3828, 37sylan9eqr 2878 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = 0)
3923, 27, 383eqtr4d 2866 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 = 0) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
4039ex 415 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 = 0 → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
4140adantr 483 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 = 0 → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
4241com12 32 . . . . 5 (𝑛 = 0 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
439adantl 484 . . . . . . . . . . . . . 14 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 𝑦 ⊆ ℤ)
4411adantl 484 . . . . . . . . . . . . . 14 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑧} ⊆ ℤ)
4543, 44unssd 4162 . . . . . . . . . . . . 13 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
46 elun1 4152 . . . . . . . . . . . . . 14 (0 ∈ 𝑦 → 0 ∈ (𝑦 ∪ {𝑧}))
4746ad2antrr 724 . . . . . . . . . . . . 13 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
48 lcmf0val 15960 . . . . . . . . . . . . 13 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ 0 ∈ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
4945, 47, 48syl2anc 586 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
5049oveq2d 7166 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = (𝑛 lcm 0))
51 eldifi 4103 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ ∖ {0}) → 𝑛 ∈ ℤ)
52 lcm0val 15932 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝑛 lcm 0) = 0)
5351, 52syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ ∖ {0}) → (𝑛 lcm 0) = 0)
5453ad2antlr 725 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm 0) = 0)
5550, 54eqtrd 2856 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = 0)
56 simp3 1134 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
5756, 29, 30sylancl 588 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
5812, 57, 33syl2anc 586 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
5958nn0zd 12079 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
6051adantl 484 . . . . . . . . . . 11 ((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) → 𝑛 ∈ ℤ)
61 lcmcom 15931 . . . . . . . . . . 11 (((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
6259, 60, 61syl2anr 598 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
6312adantl 484 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
6451snssd 4736 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ ∖ {0}) → {𝑛} ⊆ ℤ)
6564ad2antlr 725 . . . . . . . . . . . 12 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑛} ⊆ ℤ)
6663, 65unssd 4162 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
6746orcd 869 . . . . . . . . . . . . 13 (0 ∈ 𝑦 → (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
68 elun 4125 . . . . . . . . . . . . 13 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
6967, 68sylibr 236 . . . . . . . . . . . 12 (0 ∈ 𝑦 → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
7069ad2antrr 724 . . . . . . . . . . 11 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
71 lcmf0val 15960 . . . . . . . . . . 11 ((((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
7266, 70, 71syl2anc 586 . . . . . . . . . 10 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
7355, 62, 723eqtr4rd 2867 . . . . . . . . 9 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
7473a1d 25 . . . . . . . 8 (((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7574expimpd 456 . . . . . . 7 ((0 ∈ 𝑦𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7675ex 415 . . . . . 6 (0 ∈ 𝑦 → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
77 elsng 4575 . . . . . . . . . . . . . . . . . . 19 (0 ∈ ℤ → (0 ∈ {𝑧} ↔ 0 = 𝑧))
78 eqcom 2828 . . . . . . . . . . . . . . . . . . 19 (0 = 𝑧𝑧 = 0)
7977, 78syl6bb 289 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℤ → (0 ∈ {𝑧} ↔ 𝑧 = 0))
806, 79ax-mp 5 . . . . . . . . . . . . . . . . 17 (0 ∈ {𝑧} ↔ 𝑧 = 0)
8180biimpri 230 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 0 ∈ {𝑧})
8281ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ {𝑧})
8382olcd 870 . . . . . . . . . . . . . 14 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
84 elun 4125 . . . . . . . . . . . . . 14 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
8583, 84sylibr 236 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
8612, 85, 48syl2an2 684 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘(𝑦 ∪ {𝑧})) = 0)
8786oveq2d 7166 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = (𝑛 lcm 0))
8851ad2antlr 725 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 𝑛 ∈ ℤ)
8988, 52syl 17 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm 0) = 0)
9087, 89eqtrd 2856 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))) = 0)
9159, 88, 61syl2an2 684 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (𝑛 lcm (lcm‘(𝑦 ∪ {𝑧}))))
9212adantl 484 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
9364ad2antlr 725 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → {𝑛} ⊆ ℤ)
9492, 93unssd 4162 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
95 sneq 4571 . . . . . . . . . . . . . . . . 17 (𝑧 = 0 → {𝑧} = {0})
9617, 95eleqtrrid 2920 . . . . . . . . . . . . . . . 16 (𝑧 = 0 → 0 ∈ {𝑧})
9796ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ {𝑧})
9897olcd 870 . . . . . . . . . . . . . 14 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
9998, 84sylibr 236 . . . . . . . . . . . . 13 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ (𝑦 ∪ {𝑧}))
10099orcd 869 . . . . . . . . . . . 12 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
101100, 68sylibr 236 . . . . . . . . . . 11 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
10294, 101, 71syl2anc 586 . . . . . . . . . 10 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = 0)
10390, 91, 1023eqtr4rd 2867 . . . . . . . . 9 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
104103a1d 25 . . . . . . . 8 (((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) ∧ (𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin)) → ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
105104expimpd 456 . . . . . . 7 ((𝑧 = 0 ∧ 𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
106105ex 415 . . . . . 6 (𝑧 = 0 → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
107 ioran 980 . . . . . . . 8 (¬ (0 ∈ 𝑦𝑧 = 0) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0))
108 df-nel 3124 . . . . . . . . 9 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
109 df-ne 3017 . . . . . . . . 9 (𝑧 ≠ 0 ↔ ¬ 𝑧 = 0)
110108, 109anbi12i 628 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0))
111107, 110bitr4i 280 . . . . . . 7 (¬ (0 ∈ 𝑦𝑧 = 0) ↔ (0 ∉ 𝑦𝑧 ≠ 0))
112 eldif 3946 . . . . . . . 8 (𝑛 ∈ (ℤ ∖ {0}) ↔ (𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ {0}))
113 velsn 4577 . . . . . . . . . . . 12 (𝑛 ∈ {0} ↔ 𝑛 = 0)
114113bicomi 226 . . . . . . . . . . 11 (𝑛 = 0 ↔ 𝑛 ∈ {0})
115114necon3abii 3062 . . . . . . . . . 10 (𝑛 ≠ 0 ↔ ¬ 𝑛 ∈ {0})
116 lcmfunsnlem2lem2 15977 . . . . . . . . . . . 12 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
117116exp520 1353 . . . . . . . . . . 11 (0 ∉ 𝑦 → (𝑧 ≠ 0 → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))))
118117imp 409 . . . . . . . . . 10 ((0 ∉ 𝑦𝑧 ≠ 0) → (𝑛 ≠ 0 → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
119115, 118syl5bir 245 . . . . . . . . 9 ((0 ∉ 𝑦𝑧 ≠ 0) → (¬ 𝑛 ∈ {0} → (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
120119impcomd 414 . . . . . . . 8 ((0 ∉ 𝑦𝑧 ≠ 0) → ((𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
121112, 120syl5bi 244 . . . . . . 7 ((0 ∉ 𝑦𝑧 ≠ 0) → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
122111, 121sylbi 219 . . . . . 6 (¬ (0 ∈ 𝑦𝑧 = 0) → (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
12376, 106, 122ecase3 1027 . . . . 5 (𝑛 ∈ (ℤ ∖ {0}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
12442, 123jaoi 853 . . . 4 ((𝑛 = 0 ∨ 𝑛 ∈ (ℤ ∖ {0})) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
1258, 124sylbi 219 . . 3 (𝑛 ∈ ℤ → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
126125com12 32 . 2 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
1275, 126ralrimi 3216 1 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → ∀𝑛 ∈ ℤ (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wnel 3123  wral 3138  cdif 3933  cun 3934  wss 3936  {csn 4561   class class class wbr 5059  cfv 6350  (class class class)co 7150  Fincfn 8503  0cc0 10531  0cn0 11891  cz 11975  cdvds 15601   lcm clcm 15926  lcmclcmf 15927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-prod 15254  df-dvds 15602  df-gcd 15838  df-lcm 15928  df-lcmf 15929
This theorem is referenced by:  lcmfunsnlem  15979
  Copyright terms: Public domain W3C validator