Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmneg Structured version   Visualization version   GIF version

Theorem lcmneg 15247
 Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))

Proof of Theorem lcmneg
StepHypRef Expression
1 lcm0val 15238 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0)
2 znegcl 11363 . . . . . . . . 9 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
3 lcm0val 15238 . . . . . . . . 9 (-𝑁 ∈ ℤ → (-𝑁 lcm 0) = 0)
42, 3syl 17 . . . . . . . 8 (𝑁 ∈ ℤ → (-𝑁 lcm 0) = 0)
51, 4eqtr4d 2658 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 lcm 0) = (-𝑁 lcm 0))
65ad2antlr 762 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑁 lcm 0) = (-𝑁 lcm 0))
7 oveq2 6618 . . . . . . . 8 (𝑀 = 0 → (𝑁 lcm 𝑀) = (𝑁 lcm 0))
8 oveq2 6618 . . . . . . . 8 (𝑀 = 0 → (-𝑁 lcm 𝑀) = (-𝑁 lcm 0))
97, 8eqeq12d 2636 . . . . . . 7 (𝑀 = 0 → ((𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀) ↔ (𝑁 lcm 0) = (-𝑁 lcm 0)))
109adantl 482 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀) ↔ (𝑁 lcm 0) = (-𝑁 lcm 0)))
116, 10mpbird 247 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀))
12 lcmcom 15237 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑁 lcm 𝑀))
13 lcmcom 15237 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (-𝑁 lcm 𝑀))
142, 13sylan2 491 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (-𝑁 lcm 𝑀))
1512, 14eqeq12d 2636 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀)))
1615adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ (𝑁 lcm 𝑀) = (-𝑁 lcm 𝑀)))
1711, 16mpbird 247 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
18 neg0 10278 . . . . . . . 8 -0 = 0
1918oveq2i 6621 . . . . . . 7 (𝑀 lcm -0) = (𝑀 lcm 0)
2019eqcomi 2630 . . . . . 6 (𝑀 lcm 0) = (𝑀 lcm -0)
21 oveq2 6618 . . . . . 6 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0))
22 negeq 10224 . . . . . . 7 (𝑁 = 0 → -𝑁 = -0)
2322oveq2d 6626 . . . . . 6 (𝑁 = 0 → (𝑀 lcm -𝑁) = (𝑀 lcm -0))
2420, 21, 233eqtr4a 2681 . . . . 5 (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
2524adantl 482 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
2617, 25jaodan 825 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
27 dvdslcm 15242 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁)))
282, 27sylan2 491 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁)))
29 simpr 477 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
30 lcmcl 15245 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℕ0)
312, 30sylan2 491 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℕ0)
3231nn0zd 11431 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℤ)
33 negdvdsb 14929 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 lcm -𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 lcm -𝑁) ↔ -𝑁 ∥ (𝑀 lcm -𝑁)))
3429, 32, 33syl2anc 692 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∥ (𝑀 lcm -𝑁) ↔ -𝑁 ∥ (𝑀 lcm -𝑁)))
3534anbi2d 739 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) ↔ (𝑀 ∥ (𝑀 lcm -𝑁) ∧ -𝑁 ∥ (𝑀 lcm -𝑁))))
3628, 35mpbird 247 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)))
3736adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)))
38 zcn 11333 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3938negeq0d 10335 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ -𝑁 = 0))
4039orbi2d 737 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑀 = 0 ∨ 𝑁 = 0) ↔ (𝑀 = 0 ∨ -𝑁 = 0)))
4140notbid 308 . . . . . . . . . 10 (𝑁 ∈ ℤ → (¬ (𝑀 = 0 ∨ 𝑁 = 0) ↔ ¬ (𝑀 = 0 ∨ -𝑁 = 0)))
4241biimpa 501 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ -𝑁 = 0))
4342adantll 749 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ -𝑁 = 0))
44 lcmn0cl 15241 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
452, 44sylanl2 682 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
4643, 45syldan 487 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm -𝑁) ∈ ℕ)
47 simpl 473 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
48 3anass 1040 . . . . . . 7 (((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝑀 lcm -𝑁) ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)))
4946, 47, 48sylanbrc 697 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
50 simpr 477 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ¬ (𝑀 = 0 ∨ 𝑁 = 0))
51 lcmledvds 15243 . . . . . 6 ((((𝑀 lcm -𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁)))
5249, 50, 51syl2anc 692 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm -𝑁) ∧ 𝑁 ∥ (𝑀 lcm -𝑁)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁)))
5337, 52mpd 15 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁))
54 dvdslcm 15242 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
5554adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
56 simplr 791 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∈ ℤ)
57 lcmn0cl 15241 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ)
5857nnzd 11432 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℤ)
59 negdvdsb 14929 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ) → (𝑁 ∥ (𝑀 lcm 𝑁) ↔ -𝑁 ∥ (𝑀 lcm 𝑁)))
6056, 58, 59syl2anc 692 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑁 ∥ (𝑀 lcm 𝑁) ↔ -𝑁 ∥ (𝑀 lcm 𝑁)))
6160anbi2d 739 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)) ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁))))
62 lcmledvds 15243 . . . . . . . . . 10 ((((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ -𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6362ex 450 . . . . . . . . 9 (((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
642, 63syl3an3 1358 . . . . . . . 8 (((𝑀 lcm 𝑁) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
65643expib 1265 . . . . . . 7 ((𝑀 lcm 𝑁) ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∨ -𝑁 = 0) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))))
6657, 47, 43, 65syl3c 66 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ -𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6761, 66sylbid 230 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁)))
6855, 67mpd 15 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))
69 lcmcl 15245 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
7069nn0red 11303 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℝ)
7130nn0red 11303 . . . . . . 7 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℝ)
722, 71sylan2 491 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) ∈ ℝ)
7370, 72letri3d 10130 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ ((𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁) ∧ (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
7473adantr 481 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) = (𝑀 lcm -𝑁) ↔ ((𝑀 lcm 𝑁) ≤ (𝑀 lcm -𝑁) ∧ (𝑀 lcm -𝑁) ≤ (𝑀 lcm 𝑁))))
7553, 68, 74mpbir2and 956 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
7626, 75pm2.61dan 831 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = (𝑀 lcm -𝑁))
7776eqcomd 2627 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm -𝑁) = (𝑀 lcm 𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   class class class wbr 4618  (class class class)co 6610  ℝcr 9886  0cc0 9887   ≤ cle 10026  -cneg 10218  ℕcn 10971  ℕ0cn0 11243  ℤcz 11328   ∥ cdvds 14914   lcm clcm 15232 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-dvds 14915  df-lcm 15234 This theorem is referenced by:  neglcm  15248  lcmabs  15249
 Copyright terms: Public domain W3C validator