Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvat Structured version   Visualization version   GIF version

Theorem lcvat 33832
Description: If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 29095 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lcvat.s 𝑆 = (LSubSp‘𝑊)
lcvat.p = (LSSum‘𝑊)
lcvat.a 𝐴 = (LSAtoms‘𝑊)
icvat.c 𝐶 = ( ⋖L𝑊)
lcvat.w (𝜑𝑊 ∈ LMod)
lcvat.t (𝜑𝑇𝑆)
lcvat.u (𝜑𝑈𝑆)
lcvat.l (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvat (𝜑 → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈)
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐶(𝑞)   (𝑞)

Proof of Theorem lcvat
StepHypRef Expression
1 lcvat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lcvat.p . . 3 = (LSSum‘𝑊)
3 lcvat.a . . 3 𝐴 = (LSAtoms‘𝑊)
4 lcvat.w . . 3 (𝜑𝑊 ∈ LMod)
5 lcvat.t . . 3 (𝜑𝑇𝑆)
6 lcvat.u . . 3 (𝜑𝑈𝑆)
7 icvat.c . . . 4 𝐶 = ( ⋖L𝑊)
8 lcvat.l . . . 4 (𝜑𝑇𝐶𝑈)
91, 7, 4, 5, 6, 8lcvpss 33826 . . 3 (𝜑𝑇𝑈)
101, 2, 3, 4, 5, 6, 9lrelat 33816 . 2 (𝜑 → ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈))
1143ad2ant1 1080 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑊 ∈ LMod)
1253ad2ant1 1080 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑇𝑆)
1363ad2ant1 1080 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑈𝑆)
14 simp2 1060 . . . . . . 7 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑞𝐴)
151, 3, 11, 14lsatlssel 33799 . . . . . 6 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑞𝑆)
161, 2lsmcl 19015 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑞𝑆) → (𝑇 𝑞) ∈ 𝑆)
1711, 12, 15, 16syl3anc 1323 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → (𝑇 𝑞) ∈ 𝑆)
1883ad2ant1 1080 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑇𝐶𝑈)
19 simp3l 1087 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → 𝑇 ⊊ (𝑇 𝑞))
20 simp3r 1088 . . . . 5 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → (𝑇 𝑞) ⊆ 𝑈)
211, 7, 11, 12, 13, 17, 18, 19, 20lcvnbtwn2 33829 . . . 4 ((𝜑𝑞𝐴 ∧ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)) → (𝑇 𝑞) = 𝑈)
22213exp 1261 . . 3 (𝜑 → (𝑞𝐴 → ((𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈) → (𝑇 𝑞) = 𝑈)))
2322reximdvai 3010 . 2 (𝜑 → (∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈) → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈))
2410, 23mpd 15 1 (𝜑 → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  wss 3559  wpss 3560   class class class wbr 4618  cfv 5852  (class class class)co 6610  LSSumclsm 17981  LModclmod 18795  LSubSpclss 18864  LSAtomsclsa 33776  L clcv 33820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-subg 17523  df-cntz 17682  df-lsm 17983  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-lmod 18797  df-lss 18865  df-lsp 18904  df-lsatoms 33778  df-lcv 33821
This theorem is referenced by:  islshpcv  33855
  Copyright terms: Public domain W3C validator