Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem4 Structured version   Visualization version   GIF version

Theorem lcvexchlem4 33801
Description: Lemma for lcvexch 33803. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
lcvexch.f (𝜑𝑇𝐶(𝑇 𝑈))
Assertion
Ref Expression
lcvexchlem4 (𝜑 → (𝑇𝑈)𝐶𝑈)

Proof of Theorem lcvexchlem4
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvexch.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvexch.w . . . 4 (𝜑𝑊 ∈ LMod)
4 lcvexch.t . . . 4 (𝜑𝑇𝑆)
5 lcvexch.u . . . . 5 (𝜑𝑈𝑆)
6 lcvexch.p . . . . . 6 = (LSSum‘𝑊)
71, 6lsmcl 19002 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
83, 4, 5, 7syl3anc 1323 . . . 4 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
9 lcvexch.f . . . 4 (𝜑𝑇𝐶(𝑇 𝑈))
101, 2, 3, 4, 8, 9lcvpss 33788 . . 3 (𝜑𝑇 ⊊ (𝑇 𝑈))
111, 6, 2, 3, 4, 5lcvexchlem1 33798 . . 3 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
1210, 11mpbid 222 . 2 (𝜑 → (𝑇𝑈) ⊊ 𝑈)
1333ad2ant1 1080 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑊 ∈ LMod)
141lsssssubg 18877 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1513, 14syl 17 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑆 ⊆ (SubGrp‘𝑊))
16 simp2 1060 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑆)
1715, 16sseldd 3584 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠 ∈ (SubGrp‘𝑊))
1843ad2ant1 1080 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝑆)
1915, 18sseldd 3584 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
206lsmub2 17993 . . . . . . 7 ((𝑠 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑠 𝑇))
2117, 19, 20syl2anc 692 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇 ⊆ (𝑠 𝑇))
2253ad2ant1 1080 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈𝑆)
2315, 22sseldd 3584 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
24 simp3r 1088 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑠𝑈)
256lsmless1 17995 . . . . . . . 8 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑠𝑈) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
2623, 19, 24, 25syl3anc 1323 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑈 𝑇))
27 lmodabl 18831 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
283, 27syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Abel)
293, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
3029, 4sseldd 3584 . . . . . . . . 9 (𝜑𝑇 ∈ (SubGrp‘𝑊))
3129, 5sseldd 3584 . . . . . . . . 9 (𝜑𝑈 ∈ (SubGrp‘𝑊))
326lsmcom 18182 . . . . . . . . 9 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) = (𝑈 𝑇))
3328, 30, 31, 32syl3anc 1323 . . . . . . . 8 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
34333ad2ant1 1080 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
3526, 34sseqtr4d 3621 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 𝑇) ⊆ (𝑇 𝑈))
3693ad2ant1 1080 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑇𝐶(𝑇 𝑈))
371, 2, 3, 4, 8lcvbr3 33787 . . . . . . . . . 10 (𝜑 → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
3837adantr 481 . . . . . . . . 9 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) ↔ (𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))))))
393adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑊 ∈ LMod)
40 simpr 477 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑠𝑆)
414adantr 481 . . . . . . . . . . . 12 ((𝜑𝑠𝑆) → 𝑇𝑆)
421, 6lsmcl 19002 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑠𝑆𝑇𝑆) → (𝑠 𝑇) ∈ 𝑆)
4339, 40, 41, 42syl3anc 1323 . . . . . . . . . . 11 ((𝜑𝑠𝑆) → (𝑠 𝑇) ∈ 𝑆)
44 sseq2 3606 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑇𝑟𝑇 ⊆ (𝑠 𝑇)))
45 sseq1 3605 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 ⊆ (𝑇 𝑈) ↔ (𝑠 𝑇) ⊆ (𝑇 𝑈)))
4644, 45anbi12d 746 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) ↔ (𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈))))
47 eqeq1 2625 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = 𝑇 ↔ (𝑠 𝑇) = 𝑇))
48 eqeq1 2625 . . . . . . . . . . . . . 14 (𝑟 = (𝑠 𝑇) → (𝑟 = (𝑇 𝑈) ↔ (𝑠 𝑇) = (𝑇 𝑈)))
4947, 48orbi12d 745 . . . . . . . . . . . . 13 (𝑟 = (𝑠 𝑇) → ((𝑟 = 𝑇𝑟 = (𝑇 𝑈)) ↔ ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5046, 49imbi12d 334 . . . . . . . . . . . 12 (𝑟 = (𝑠 𝑇) → (((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) ↔ ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5150rspcv 3291 . . . . . . . . . . 11 ((𝑠 𝑇) ∈ 𝑆 → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5243, 51syl 17 . . . . . . . . . 10 ((𝜑𝑠𝑆) → (∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5352adantld 483 . . . . . . . . 9 ((𝜑𝑠𝑆) → ((𝑇 ⊊ (𝑇 𝑈) ∧ ∀𝑟𝑆 ((𝑇𝑟𝑟 ⊆ (𝑇 𝑈)) → (𝑟 = 𝑇𝑟 = (𝑇 𝑈)))) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5438, 53sylbid 230 . . . . . . . 8 ((𝜑𝑠𝑆) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
55543adant3 1079 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝐶(𝑇 𝑈) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))))
5636, 55mpd 15 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 ⊆ (𝑠 𝑇) ∧ (𝑠 𝑇) ⊆ (𝑇 𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈))))
5721, 35, 56mp2and 714 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)))
58 ineq1 3785 . . . . . . 7 ((𝑠 𝑇) = 𝑇 → ((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈))
59 simp3l 1087 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑇𝑈) ⊆ 𝑠)
601, 6, 2, 13, 18, 22, 16, 59, 24lcvexchlem2 33799 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) ∩ 𝑈) = 𝑠)
6160eqeq1d 2623 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = (𝑇𝑈) ↔ 𝑠 = (𝑇𝑈)))
6258, 61syl5ib 234 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = 𝑇𝑠 = (𝑇𝑈)))
63 ineq1 3785 . . . . . . 7 ((𝑠 𝑇) = (𝑇 𝑈) → ((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈))
646lsmub2 17993 . . . . . . . . . 10 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (𝑇 𝑈))
6519, 23, 64syl2anc 692 . . . . . . . . 9 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → 𝑈 ⊆ (𝑇 𝑈))
66 sseqin2 3795 . . . . . . . . 9 (𝑈 ⊆ (𝑇 𝑈) ↔ ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6765, 66sylib 208 . . . . . . . 8 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑇 𝑈) ∩ 𝑈) = 𝑈)
6860, 67eqeq12d 2636 . . . . . . 7 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) ∩ 𝑈) = ((𝑇 𝑈) ∩ 𝑈) ↔ 𝑠 = 𝑈))
6963, 68syl5ib 234 . . . . . 6 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → ((𝑠 𝑇) = (𝑇 𝑈) → 𝑠 = 𝑈))
7062, 69orim12d 882 . . . . 5 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (((𝑠 𝑇) = 𝑇 ∨ (𝑠 𝑇) = (𝑇 𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
7157, 70mpd 15 . . . 4 ((𝜑𝑠𝑆 ∧ ((𝑇𝑈) ⊆ 𝑠𝑠𝑈)) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))
72713exp 1261 . . 3 (𝜑 → (𝑠𝑆 → (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈))))
7372ralrimiv 2959 . 2 (𝜑 → ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))
741lssincl 18884 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝑈) ∈ 𝑆)
753, 4, 5, 74syl3anc 1323 . . 3 (𝜑 → (𝑇𝑈) ∈ 𝑆)
761, 2, 3, 75, 5lcvbr3 33787 . 2 (𝜑 → ((𝑇𝑈)𝐶𝑈 ↔ ((𝑇𝑈) ⊊ 𝑈 ∧ ∀𝑠𝑆 (((𝑇𝑈) ⊆ 𝑠𝑠𝑈) → (𝑠 = (𝑇𝑈) ∨ 𝑠 = 𝑈)))))
7712, 73, 76mpbir2and 956 1 (𝜑 → (𝑇𝑈)𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  cin 3554  wss 3555  wpss 3556   class class class wbr 4613  cfv 5847  (class class class)co 6604  SubGrpcsubg 17509  LSSumclsm 17970  Abelcabl 18115  LModclmod 18784  LSubSpclss 18851  L clcv 33782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-0g 16023  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-subg 17512  df-cntz 17671  df-lsm 17972  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-lmod 18786  df-lss 18852  df-lcv 33783
This theorem is referenced by:  lcvexch  33803  lsatcvat3  33816
  Copyright terms: Public domain W3C validator