Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvfbr Structured version   Visualization version   GIF version

Theorem lcvfbr 36036
Description: The covers relation for a left vector space (or a left module). (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
Assertion
Ref Expression
lcvfbr (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
Distinct variable groups:   𝑡,𝑠,𝑢,𝑆   𝑊,𝑠,𝑡,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑡,𝑠)   𝐶(𝑢,𝑡,𝑠)   𝑋(𝑢,𝑡,𝑠)

Proof of Theorem lcvfbr
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lcvfbr.c . 2 𝐶 = ( ⋖L𝑊)
2 lcvfbr.w . . 3 (𝜑𝑊𝑋)
3 elex 3510 . . 3 (𝑊𝑋𝑊 ∈ V)
4 fveq2 6663 . . . . . . . . 9 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
5 lcvfbr.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
64, 5syl6eqr 2871 . . . . . . . 8 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
76eleq2d 2895 . . . . . . 7 (𝑤 = 𝑊 → (𝑡 ∈ (LSubSp‘𝑤) ↔ 𝑡𝑆))
86eleq2d 2895 . . . . . . 7 (𝑤 = 𝑊 → (𝑢 ∈ (LSubSp‘𝑤) ↔ 𝑢𝑆))
97, 8anbi12d 630 . . . . . 6 (𝑤 = 𝑊 → ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ↔ (𝑡𝑆𝑢𝑆)))
106rexeqdv 3414 . . . . . . . 8 (𝑤 = 𝑊 → (∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢) ↔ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))
1110notbid 319 . . . . . . 7 (𝑤 = 𝑊 → (¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢) ↔ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))
1211anbi2d 628 . . . . . 6 (𝑤 = 𝑊 → ((𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)) ↔ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢))))
139, 12anbi12d 630 . . . . 5 (𝑤 = 𝑊 → (((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢))) ↔ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))))
1413opabbidv 5123 . . . 4 (𝑤 = 𝑊 → {⟨𝑡, 𝑢⟩ ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)))} = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
15 df-lcv 36035 . . . 4 L = (𝑤 ∈ V ↦ {⟨𝑡, 𝑢⟩ ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)))})
165fvexi 6677 . . . . . 6 𝑆 ∈ V
1716, 16xpex 7465 . . . . 5 (𝑆 × 𝑆) ∈ V
18 opabssxp 5636 . . . . 5 {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))} ⊆ (𝑆 × 𝑆)
1917, 18ssexi 5217 . . . 4 {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))} ∈ V
2014, 15, 19fvmpt 6761 . . 3 (𝑊 ∈ V → ( ⋖L𝑊) = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
212, 3, 203syl 18 . 2 (𝜑 → ( ⋖L𝑊) = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
221, 21syl5eq 2865 1 (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wrex 3136  Vcvv 3492  wpss 3934  {copab 5119   × cxp 5546  cfv 6348  LSubSpclss 19632  L clcv 36034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-lcv 36035
This theorem is referenced by:  lcvbr  36037
  Copyright terms: Public domain W3C validator